Chin. Phys. Lett.  2010, Vol. 27 Issue (6): 067303    DOI: 10.1088/0256-307X/27/6/067303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Self-Consistent Study of Conjugated Aromatic Molecular Transistors

WANG Jing1, LIANG Yun-Ye1, CHEN Hao1, WANG Peng2, R. Note3, H. Mizuseki3, Y. Kawazoe3

1Department of Physics, Fudan University, Shanghai 200433 2High-end computing center, Fudan University, Shanghai 200433 3Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
Cite this article:   
WANG Jing, LIANG Yun-Ye, CHEN Hao et al  2010 Chin. Phys. Lett. 27 067303
Download: PDF(437KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study the current through conjugated aromatic molecular transistors modulated by a transverse field. The self-consistent calculation is realized with density function theory through the standard quantum chemistry software Gaussian03 and the non-equilibrium Green's function formalism. The calculated I-V curves controlled by the transverse field present the characteristics of different organic molecular transistors, the transverse field effect of which is improved by the substitutions of nitrogen atoms or fluorine atoms. On the other hand, the asymmetry of molecular configurations to the axis connecting two sulfur atoms is in favor of realizing the transverse field modulation. Suitably designed conjugated aromatic molecular transistors possess different I-V characteristics, some of them are similar to those of metal-oxide-semiconductor field-effect transistors (MOSFET). Some of the calculated molecular devices may work as elements in graphene electronics. Our results present the richness and flexibility of molecular transistors, which describe the colorful prospect of next generation devices.

Keywords: 73.23.-b      85.65.+h      31.15.Ar     
Received: 20 January 2010      Published: 25 May 2010
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  85.65.+h (Molecular electronic devices)  
  31.15.Ar  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/6/067303       OR      https://cpl.iphy.ac.cn/Y2010/V27/I6/067303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Jing
LIANG Yun-Ye
CHEN Hao
WANG Peng
R. Note
H. Mizuseki
Y. Kawazoe
[1] Wada Y et al 2000 Jpn. J. Appl. Phys. 39 3835
[2] Aviram A and Ratner M A 1974 Chem. Phys. Lett. 29 277
[3] Chen F et al 2007 Annu. Rev. Phys. Chem. 58 535
[4] Song H, Kim Y, Jang Y H, Jeong H, Reed M A and Lee T 2009 Nature 462 1039
[5] Xiao K, Liu Y, Qi T, Zhang W, Wang F, Gao J, Qiu W, Ma Y et al 2005 J. Am. Chem. Soc. 127 13281
[6] Xu B, Xiao X, Yang X, Zang L and Tao N J 2005 J. Am. Chem. Soc. 127 2386
[7] Tao N J 2006 Nature Nanotechnol. 1 173
[8] Di Ventra M, Pantelides S T and Lang N D 2000 Phys. Rev. Lett. 84 979
[9] Yang Z, Lang N D and Di Ventra M 2003 Appl. Phys. Lett. 82 1938
[10] Jiang F, Zhou Y X, Chen H, Note R, Mizuseki H and Kawazoe Y 2005 J. Chem. Phys. 125 084710
[11] Frisch M J, Trucks G W, Schlegel H et al 2004 GAUSSIAN 03, Revision D 01 (Wallingford, CT: Gaussian, Inc.)
[12] Jiang F, Zhou Y X, Chen H, Note R, Mizuseki H and Kawazoe Y 2005 Phys. Rev. B 72 155408
[13] Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University)
[14] Datta S 2000 Superlattices Microstruct 28 253
[15] Becke A D 1993 J. Chem. Phys. 98 5648
[16] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[17] Wadt W and Hay P 1985 J. Chem. Phys. 82 284
[18] Elbing M, Ochs R, Koentopp M, Fischer M, von Hanisch C, Weigend F, Evers F, Weber H B and Mayor M 2005 Proc. Natl. Acad. Sci. USA 102 8815
[19] Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S and Geim A K 2008 Science 320 356
Related articles from Frontiers Journals
[1] YANG Gong-Xian, GONG Xiu-Fang. Laser-Induced Distortions and Disturbance Propagation of Delocalized Electronic States in Monatomic Carbon Chains[J]. Chin. Phys. Lett., 2012, 29(6): 067303
[2] ZHAO Peng**,LIU De-Sheng,. Electronic Transport Properties of an Anthraquinone-Based Molecular Switch with Carbon Nanotube Electrodes[J]. Chin. Phys. Lett., 2012, 29(4): 067303
[3] XIA Cai-Juan**, LIU De-Sheng, ZHANG Ying-Tang . Electronic Transport Properties of a Naphthopyran-Based Optical Molecular Switch: an ab initio Study[J]. Chin. Phys. Lett., 2011, 28(9): 067303
[4] JIA Zhi-Chun, HU Zhen-Peng, ZHAO Ai-Di, LI Zhen-Yu, LI Bin** . Scanning Tunneling Spectroscopy of Metal Phthalocyanines on a Au(111) Surface with a Ni Tip[J]. Chin. Phys. Lett., 2011, 28(7): 067303
[5] ZHAO Peng**, LIU De-Sheng, ZHANG Ying, WANG Pei-Ji, ZHANG Zhong . Rectifying Properties of a Nitrogen/Boron-Doped Capped-Carbon-Nanotube-Based Molecular Junction[J]. Chin. Phys. Lett., 2011, 28(4): 067303
[6] ZHENG Ji-Ming, HUANG Yao-Qing**, REN Zhao-Yu, YANG Hui-Jing, CAO Mao-Sheng** . Electronic Non-Resonant Tunneling through Diaminoacenes: A First-Principles Investigation[J]. Chin. Phys. Lett., 2011, 28(2): 067303
[7] ZHOU Li-Ling . Unique Properties of Heat Generation in Nanoscale Systems[J]. Chin. Phys. Lett., 2011, 28(12): 067303
[8] CAO Wen-Qiang, , LU Ming-Ming, WEN Bo, CHEN Yuan-Lu, LI Hong-Bo, YUAN Jie**, CAO Mao-Sheng** . MWCNTs/SiO2 Composite System: Carrier Transmission, Twin-Percolation and Dielectric Properties[J]. Chin. Phys. Lett., 2011, 28(10): 067303
[9] Attia A. Awadalla, Adel H. Phillips** . Thermal Shot Noise through Boundary Roughness of Carbon Nanotube Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(1): 067303
[10] ZHANG Qing-Yun, WANG Bai-Geng, SHEN Rui, XING Ding-Yu. Generation and Quantum Interference of Entangled Electron-Hole Pairs in a Hanbury Brown and Twiss Interferometer[J]. Chin. Phys. Lett., 2010, 27(9): 067303
[11] CHEN Zhi-Dong, ZHANG Jin-Yu, YU Zhi-Ping. Numerical Analysis of Alternating-Current Small-Signal Response in Graphene Nanoribbons[J]. Chin. Phys. Lett., 2010, 27(8): 067303
[12] LIN Liang-Zhong, ZHU Rui, DENG Wen-Ji. Shot Noise in Aharonov-Casher Rings[J]. Chin. Phys. Lett., 2010, 27(6): 067303
[13] LI Jin-Liang, LI Yu-Xian. Spin Current Through Triple Quantum Dot in the Presence of Rashba Spin-Orbit Interaction[J]. Chin. Phys. Lett., 2010, 27(5): 067303
[14] SU Wen-Yong, LUO Yi. Weak Gate Effect in 1,3-Benzenedithiol Molecular Device[J]. Chin. Phys. Lett., 2010, 27(4): 067303
[15] M. D. Ganji, H. Yazdani. Interaction between B-Doped C60 Fullerene and Glycine Amino Acid from First-Principles Simulation[J]. Chin. Phys. Lett., 2010, 27(4): 067303
Viewed
Full text


Abstract