CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Van der Pauw Hall Measurement on Intended Doped ZnO Films for p-Type Conductivity |
GUO Yang, LIU Yao-Ping, LI Jun-Qiang, ZHANG Sheng-Li, MEI Zeng-Xia, DU Xiao-Long |
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 |
|
Cite this article: |
GUO Yang, LIU Yao-Ping, LI Jun-Qiang et al 2010 Chin. Phys. Lett. 27 067203 |
|
|
Abstract A Van der Pauw Hall measurement is performed on the intended doped ZnO films (Na doped ZnO) grown by using the molecular beam epitaxial method. All as-grown samples show n-type conductivity, whereas the annealed samples (annealing temperature 900°C) show ambiguous carrier conductivity type (n- and p-type) in the automatic Van der Pauw Hall measurement. A similar result has been observed in Li doped ZnO and in as-doped ZnO films by other groups before. However, by tracing the Hall voltage in the Van der Pauw Hall measurement, it is found that this alternative appearance of both n- and p-type conductivity is not intrinsic behavior of the intended doped ZnO films, but is due to the persistent photoconductivity effect in ZnO. The persistent photoconductivity effect would strongly affect the accurate determination of the carrier conductivity type of a highly resistive intended doped ZnO sample.
|
Keywords:
72.80.Ey
72.60.+g
73.50.Dn
73.50.Pz
|
|
Received: 09 November 2009
Published: 25 May 2010
|
|
PACS: |
72.80.Ey
|
(III-V and II-VI semiconductors)
|
|
72.60.+g
|
(Mixed conductivity and conductivity transitions)
|
|
73.50.Dn
|
(Low-field transport and mobility; piezoresistance)
|
|
73.50.Pz
|
(Photoconduction and photovoltaic effects)
|
|
|
|
|
[1] Klingshirn C 2007 Phys. Status Solidi B 244 3027 [2] Tsukazaki A, Ohtomo A, Kita T, Ohno Y, Ohno H and Kawasaki M 2007 Science 315 1388 [3] Sun X W, Zhao J L, Tan S T, Tan L H, Tung C H, Lo G Q, Kwong D L, Zhang Y W, Li X M and Teo K L 2008 Appl. Phys. Lett. 92 111113 [4] Zhang T C, Guo Y, Mei Z X, Gu C Z and Du X L 2009 Appl. Phys. Lett. 94 113508 [5] Look D C, Renlund G M, Burgener II R H and Sizelove J R 2004 Appl. Phys. Lett. 85 5269 [6] Yan Y, Li J, Wei S-H and Al-Jassim M M 2007 Phys. Rev. Lett. 98 135506 [7] Yan Y and Wei S H 2008 Phys. Status Solidi B 245 641 %DOI 10.1002/pssb.200743334 [8] Park C H, Zhang S B and Wei S H 2002 Phys. Rev. B 66 73202 [9] Look D C, Reynolds D C, Litton C W, Jones R L, Eason D B and Cantwell G 2002 Appl. Phys. Lett. 81 1830 [10] Xiu F X, Yang Z, Mandalapu L J and Liu J L 2006 Appl. Phys. Lett. 88 152116 [11] Wang X H, Yao B, Shen D Z, Zhang Z Z, Li B H, Wei Z P, Lu Y M, Zhao D X, Zhang J Y, Fan X W, Guan L X and Cong C X 2007 Solid State Commun. 141 600 %DOI10.1016/j.ssc.2007.01.002 [12] Xiu F X, Yang Z, Mandalapu L J, Zhao D T and Liu L 2005 Appl. Phys. Lett. 87 252102 [13] Erie J M, Ivill M, Kim H S, Pearton S J, Gila B, Ren F and Norton D P 2008 Phys. Status Solidi A 205 1647 % DOI 10.1002/pssa.200723663 [14] Meyer B K, Sann J and Zeuner A 2005 Superlattices and Microstructures 38 344 [15] Tamura K, Makino T, Tsukazaki A, Sumiya M, Fuke S, Furumochi T, Lippmaa M, Chia C H, Segawa Y, Koinuma H and Kawasaki M 2003 Solid State Commun. 127 265 [16] Claflin B, Look D C and Norton D R 2007 J. Electron. Mater. 36 442 [17] Van der Pauw L J 1958 Philips Tech. Rev. 20 220 [18] Van der Pauw L J 1958 Philips Res. Rep. 13 1 [19] Mei Z X, Wang Y, Du X L, Ying M J, Zeng Z Q, Zhang H, Jia J F, Xue Q K and Zhang Z 2004 J. Appl. Phys. 96 7108 [20] Polyakov A Y, Smirnov N B, Govorkov A V, Belogorokhov A I, Kozhukhova E A, Markov A V, Osinsky A, Dong J W and Pearton S J 2007 Appl. Phys. Lett. 90 132103 [21] Claflin B, Look D C, Park S J and Cantwell G 2006 J. Cryst. Growth 287 16 [22] Lany S and Zunger A 2005 Phys. Rev. B 72 35215
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|