CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Modifying Quantum Well States of Pb Thin Films via Interface Engineering |
FU Ying-Shuang1,2, JI Shuai-Hua1,2, ZHANG Tong1,2, CHEN Xi2, JIA Jin-Feng2, XUE Qi-Kun2, MA Xu-Cun1
|
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190 2Department of Physics, Tsinghua University, Beijing 100084 |
|
Cite this article: |
FU Ying-Shuang, JI Shuai-Hua, ZHANG Tong et al 2010 Chin. Phys. Lett. 27 066804 |
|
|
Abstract We demonstrate the importance of interface modification on improving electron confinement by preparing Pb quantum islands on Si(111) substrates with two different surface reconstructions, i.e., Si(111)-7× 7 and Si(111)-Root3×Root3-Pb (hereafter, 7× 7 and R3). Characterization with scanning tunneling microscopy/spectroscopy shows that growing Pb films directly on a 7×7 surface will generate many interface defects, which makes the lifetime of quantum well states (QWSs) strongly dependent on surface locations. On the other hand, QWSs in Pb films on an R3 surface are well defined with small variations in linewidth on different surface locations and are much sharper than those on the 7×7 surface. We show that the enhancement in quantum confinement is primarily due to the reduced electron-defect scattering at the interface.
|
Keywords:
68.37.Ef
68.35.Bg
81.15.Hi
|
|
Received: 06 April 2010
Published: 25 May 2010
|
|
PACS: |
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
68.35.bg
|
(Semiconductors)
|
|
81.15.Hi
|
(Molecular, atomic, ion, and chemical beam epitaxy)
|
|
|
|
|
[1] Chiang T C 2005 Surf. Sci. Rep. 39 181 [2] Milun M, Pervan P and Woodruff D P 2002 Rep. Prog. Phys. 65 99 [3] Jia J F, Li S C, Zhang Y F and Xue Q K 2007 J. Phys. Soc. Jpn. 76 082001 [4] Guo Y, Zhang Y F, Bao X Y, Han T Z, Tang Z, Zhang L X, Zhu W G, Wang E G, Niu Q, Qiu Z Q, Jia J F and Xue Q K 2004 Science 306 1915 [5] Ma X C, Jiang P, Qi Y, Jia J F, Yang Y, Duan W H, Li W X, Bao X H, Zhang S B and Xue Q K 2007 Proc. Natl. Acad. Sci. 104 9204 [6] Jiang P, Wang L L, Ning Y X, Qi Y, Ma X C, Jia J F and Xue Q K 2009 Chin. Phys. Lett. 26 016803 [7] Ma L Y, Tang L, Guan Z L, He K, An K, Ma X C, Jia J F and Xue Q K, Han Y, Huang S and Liu F 2006 Phys. Rev. Lett . 97 266102 [8] Fu Y S, Ji S H, Chen X, Ma X C, Wu R, Wang C C, Duan W H, Qiu X H, Sun B, Zhang P, Jia J F and Xue Q K 2007 Phys. Rev. Lett . 99 226601 [9] Zhang Y F, Jia J F, Han T Z, Tang Z, Shen Q T, Guo Y and Xue Q K 2005 Phys. Rev. Lett . 95 096802 [10] Qi Y, Ma X C, Jiang P, Ji S H, Fu Y S, Jia J F Xue Q K and Zhang S B 2007 Appl. Phys. Lett . 90 013109 [11] Jiang P, Ma X C, Ning Y X, Song C L, Chen X, Jia J F and Xue Q K 2008 J. Am. Chem. Soc. 130 7790 %DOI; 10.1021/ja801255w [12] Altfeder I B, Matveev K A and Chen D M 1997 Phys. Rev. Lett. 78 2815 [13] Czoschke P, Hong H, Basile L and Chiang T C 2004 Phys. Rev. Lett. 93 036103 [14] Altfeder I B and Chen D M 1998 Phys. Rev. Lett . 80 4895 [15] Chan T L, Wang C Z, Hupalo M, Tringides M C, Lu Z Y and Ho K M 2003 Phys. Rev. B 68 045410 [16] Altfeder I B, Narayanamurti V and Chen D M 2002 Phys. Rev. Lett . 88 206801 [17] Lin H Y, Chiu Y P, Huang L W, Chen Y W, Fu T Y, Chang C S and Tsong T T 2005 Phys. Rev. Lett . 94 136101 [18] Hong I P, Brun C, Patthey F, Sklyadneva I Y, Zubizarreta X, Heid R, Silkin V M, Echenique P M, Bohnen K P, Chulkov E V and Schneider W D 2009 Phys. Rev. B 80 081409(R) [19] Wu R, Wang L L, Zhang Y, Ma X C, Jia J F and Xue Q K 2010 Chin. Phys. Lett. 27 026802 [20] Ricci D A, Miller T and Chiang T C 2005 Phys. Rev. Lett . 95 266101
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|