FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Transmission Properties of One-Dimensional Photonic Crystals Containing Anisotropic Metamaterials |
ZHANG Li-Wei1,2, YAN Ling-Ling1, ZHAO Yu-Huan1, LIU Li2 |
1School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 2Pohl Institute of Solid State Physics, Tongji University, Shanghai 200092 |
|
Cite this article: |
ZHANG Li-Wei, YAN Ling-Ling, ZHAO Yu-Huan et al 2010 Chin. Phys. Lett. 27 064101 |
|
|
Abstract The transmission properties of one-dimensional photonic crystals (1DPCs) containing anisotropic metamaterials are theoretically studied. It is shown that the 1DPCs can possess a similar zero average index (zero-n)gaps, the edges of zero-n gap are weakly dependent on the incident angles, scale length and the polarization of the electromagnetic wave. When an impurity is introduced, a defect mode appears inside the zero-n gap with a very weak dependence on incident angles and scaling. It is found that in such photonic crystals, a transmitted Gaussian pulse with its carrier frequency lying in the lower gap edge, in the defect mode and in the bandgap, can experience a positive or negative group delay and hence a subluminal, ultraslow or superluminal propagation with small distortions. These properties of the photonic crystals have potential applications in the transfer of information.
|
Keywords:
41.20.Jb
42.70.Qs
42.25.Bs
|
|
Received: 18 December 2009
Published: 25 May 2010
|
|
PACS: |
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
42.70.Qs
|
(Photonic bandgap materials)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
|
|
|
[1] Yablonovitch E 1987 Phys. Rev. Lett . 58 2059     John S 1987 Phys. Rev. Lett. 58 2486 [2] Joannopoulos J, Meade R and Winn J 1995 Photonic Crystals: Molding the Flow of Light (Princeton: Princeton University) [3] Veselago V G 1968 Sov. Phys. Usp. 10 509 [4] Shelby R A, Smith D R and Schultz S 2001 Science 292 77     Smith D R et al 2000 Phys. Rev. Lett. 84 4184 [5] Caloz C and Itoh T 2006 Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (New York: Wiley {\&} Sons)     Si L M, Sun H J et al 2010 Chin. Phys. Lett. 27 034106 [6] Li J, Zhou L, Chan C T and Sheng P 2003 Phys. Rev. Lett. 90 083901 [7] Bria D et al 2004 Phys. Rev. E 69 066613 [8] Jiang H T et al 2003 Appl. Phys. Lett. 83 5386 [9] Smith D R and Schurig D 2003 Phys. Rev. Lett. 90 077405 [10] Yan W et al 2007 J. Opt. Soc. Am. A 24 530 [11] Cheng M and Chen R 2009 Chin. Phys. Lett. 26 014101 [12] Schurig D and Smith D R 2003 Appl. Phys. Lett. 82 2215 [13] Xu G D, Su L, Pan T, Zang T C 2008 Physica B 403 3417 [14] Ziolkowski R W 2001 Phys. Rev. E 63 046604 Dutta Gupta S et al 2004 Phys. Rev. B 69 113104 [15] Wang L G et al 2004 Phys. Rev. E 70 016601 [16] Wang L G et al 2004 Phys. Rev. B 70 245102 [17] Wang S and Gao L 2005 Eur. Phys. J. B 48 29 [18] Solli D R et al 2003 IEEE J. Sel. Top. Quantum Electron . 9 40 [19] Zhang K Q and Li D J 1994 Electromagnetic Theory in Microwaves and Optoelectronics (Beijing: Publishing House of Electronic Industry) p 466 (in Chinese)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|