NUCLEAR PHYSICS |
|
|
|
|
Relativistic Mean Field Study of the Z=117 Isotopic Chain |
GAO Yuan1,2, ZHANG Hong-Fei2, ZHANG Lei1, CHEN Xi-Meng2, LI Jun-Qing2,3, GUO Wen-Jun4 |
1School of Information Engineering, Hangzhou Dianzi University, Hangzhou 310018 2School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 3Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 4College of Science, University of Shanghai for Science and Technology, Shanghai 200093 |
|
Cite this article: |
GAO Yuan, ZHANG Hong-Fei, ZHANG Lei et al 2010 Chin. Phys. Lett. 27 062102 |
|
|
Abstract The properties of the Z=117 isotopic chain are studied within the framework of the axially deformed relativistic mean field theory (RMFT) in the blocked BCS approximation. The ground-state properties, such as binging energies, deformations as well as the possible α decay energies and lifetimes are calculated with the parameter set of NL-Z2 and compared with results from the finite range droplet model. The analysis by RMFT shows that the isotopes in the range of mass number A=291~300 exhibit higher stability, which suggests that they may be promising nuclei to be hopefully synthesized in the lab among the nuclei Z=117.
|
Keywords:
21.10.Pc
21.10.Dr
21.60.-n
|
|
Received: 07 January 2010
Published: 25 May 2010
|
|
PACS: |
21.10.Pc
|
(Single-particle levels and strength functions)
|
|
21.10.Dr
|
(Binding energies and masses)
|
|
21.60.-n
|
(Nuclear structure models and methods)
|
|
|
|
|
[1] Nilsson S G, Tsang C F and Sobiczewski A 1969 Nucl. Phys. A 131 1 [2] Mosel U and Greiner W 1969 Z. Phys. 222 261 [3] Sobiczewskia A and Pomorski K 2007 Prog. Part. Nucl. Phys. 58 292 [4] Das S and Gangopadhyay G 2004 J. Phys. G 30 957 [5] Munzenberg G 1988 Rep. Prog. Phys. 51 57 [6] Hofmann S and Munzenberg G 2000 Rev. Mod. Phys. 72 733 [7] Hofmann S, Ninov V and Hessberger F P 1996 Z. Phys. A 354 229 [8] Hofmann S, Hessberger F P and Ackermann D 2002 Eur. Phys. J. A 14 147 [9] Ginter T N, Gregorich K E and Lee L W 2003 Phys. Rev. C 67 064609 [10] Ogasessian Y T, Utyonkov V K, Lobanov Yu A and Abdullin F S 1999 Phys. Rev. Lett. 83 3144 [11] Ogasessian Y T, Utyonkov V K and Lobanov Yu A 2000 Phys. Rev. C 6 (R)041604 [12] Ogasessian Y T, Utyonkov V K and Lobanov Yu A 2000 Phys. Rev. C 63 011301(R) [13] Ogasessian Y T, Utyonkov V K and Lobanov Yu A 2004 Phys. Rev. C 69 054607 [14] Ogasessian Y T, Utyonkov V K and Lobanov Yu A 2004 Phys. Rev. C 69 021601(R) [15] Ninov V et al 1999 Phys. Rev. Lett. 83 1104 [16] Yu T, Oganessian et al 2001 Phys. Rev. C 63 011301(R) [17] Möller P, Nix J R, Myers W D and Swiatecki W J 1995 At. Data Nucl. Data Tables 59 185 Möller P, Nix J R, Myers W D and Swiatecki W J 1997 At. Data Nucl. Data Tables 66 131 [18] Serot B D and Walecka J D 1986 Adv. Nucl. Phys. 16 1 [19] Rwinhard P G 1989 Rep. Prog. Phys. 52 439 [20] Chen B Q, Ma Z Y and Grummer F 1999 Phys. Lett. B 455 13 [21] Vretenar D, Afanasjev A V, Lalazissis G A and Ring P 2005 Phys. Rep. 409 101 [22] Meng J,Toki H and Zhou S G 2006 Prog. Part. Nucl. Phys. 57 470 [23] Zhong M F, LI J X and Zhang D G et al 2010 Chin. Phys. Lett. 27 022103 [24] Ren Z Z et al 2002 Phys. Rev. C 65 051304(R) [25] Zhang H F, Li J Q and Zuo W 2005 Phys. Rev. C 71 054312 [26] Gambhir Y K, Ring P and Thimet A 1990 Ann. Phys. (N.Y.) 198 132 [27] Chang X and Ren Z Z 2006 Phys. Rev. C 74 014304(R) [28] Bender M, Rutz K, Reinhard P G and Maruhn J A 1999 Phys. Rev. C 60 034304 [29] Li J Q, Ma Z Y and Chen B Q 2002 Phys. Rev. C 65 064305 [30] Mehta M S, RajS B K and Patra K 2002 Phys. Rev. C 66 044317 [31] Saldanha A A, Farhan A R and Sharma M M 2009 J. Phys. G 36 115103 [32] Patra S K, Wu C H, Praharaj C R and Gupta R K 1999 Nucl. Phys. A 651 117 [33] Royer G 2000 J. Phys. G: Nucl. Part. Phys. 26 1149
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|