Chin. Phys. Lett.  2010, Vol. 27 Issue (6): 061101    DOI: 10.1088/0256-307X/27/6/061101
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Exact Bosonic Solutions of the Truncated Skyrme Model

SHI Chang-Guang1, HIRAYAMA Minoru1,2

1Department of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090 2Department of Physics, University of Toyama, Gofuku 3190, Toyama, Japan
Cite this article:   
SHI Chang-Guang, HIRAYAMA Minoru 2010 Chin. Phys. Lett. 27 061101
Download: PDF(508KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A model defined by half the Lagrangian (the highly nonlinear part) of the Skyrme model is investigated. Two classes of bosonic solutions are obtained. It is shown that, although the field configurations of these two classes are different, the energy densities for the two classes take the same form.

Keywords: 11.10.Lm      02.30.Ik      03.50.-z     
Received: 30 November 2009      Published: 25 May 2010
PACS:  11.10.Lm (Nonlinear or nonlocal theories and models)  
  02.30.Ik (Integrable systems)  
  03.50.-z (Classical field theories)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/6/061101       OR      https://cpl.iphy.ac.cn/Y2010/V27/I6/061101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SHI Chang-Guang
HIRAYAMA Minoru
[1] Skyrme T H R 1961 Proc. Roy. Soc. London A 260 127
[2] Faddeev L D 1976 Lett. Math. Phys. 1 289
[3] Ferreira L A 2006 J. High Energy Phys. 0603 075 arXiv: {hep-th/0601235v2}
[4] Liu. P, Lou S Y 2010 Chin. Phys. Lett. 27 040202
[5] Deng M 2009 Chin. Phys. Lett. 26 120203
[6] Xu X G, Meng X H and Gao Y T 2008 Chin. Phys. Lett. 25 3890
[7] Alvarez O, Ferreira L A and Sánchez-Guillén J 2009 Int. J. Mod. Phys. A {24 } 1825 arXiv:hep-th/0901.1654v1
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 061101
[2] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 061101
[3] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 061101
[4] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 061101
[5] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 061101
[6] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 061101
[7] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 061101
[8] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 061101
[9] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 061101
[10] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 061101
[11] CHEN Xiang-Wei, MEI Feng-Xiang** . Jacobi Last Multiplier Method for Equations of Motion of Constrained Mechanical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 061101
[12] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 061101
[13] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 061101
[14] WU Hua, ZHANG Da-Jun** . Strong Symmetries of Non-Isospectral Ablowitz–Ladik Equations[J]. Chin. Phys. Lett., 2011, 28(2): 061101
[15] Abbagari Souleymanou, **, Victor K. Kuetche, Thomas B. Bouetou, , Timoleon C. Kofane . Scattering Behavior of Waveguide Channels of a New Coupled Integrable Dispersionless System[J]. Chin. Phys. Lett., 2011, 28(12): 061101
Viewed
Full text


Abstract