Chin. Phys. Lett.  2010, Vol. 27 Issue (6): 060505    DOI: 10.1088/0256-307X/27/6/060505
GENERAL |
Investigation of a Unified Chaotic System and Its Synchronization by Simulations*

WU Qing-Chu1,2, FU Xin-Chu1, Michael Small3

1Department of Mathematics, Shanghai University, Shanghai 200444 2College of Mathematics and Information Science, Jiangxi Normal University, Nanchang 330022 3Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
Cite this article:   
WU Qing-Chu, FU Xin-Chu, Michael Small 2010 Chin. Phys. Lett. 27 060505
Download: PDF(369KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigate a unified chaotic system and its synchronization including feedback synchronization and adaptive synchronization by numerical simulations. We propose a new dynamical quantity denoted by K, which connects adaptive synchronization and feedback synchronization, to analyze synchronization schemes. We find that K can estimate the smallest coupling strength for a unified chaotic system whether it is complete feedback or one-sided feedback. Based on the previous work, we also give a new dynamical method to compute the leading Lyapunov exponent.

Keywords: 05.45.Pq      05.45.Xt     
Received: 18 November 2009      Published: 25 May 2010
PACS:  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Xt (Synchronization; coupled oscillators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/6/060505       OR      https://cpl.iphy.ac.cn/Y2010/V27/I6/060505
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Qing-Chu
FU Xin-Chu
Michael Small
[1] Chen G R and Ueta T 1999 Int. J. Bifur. Chaos 9 1465
[2] Lü J H, Zhou T S and Zhang S C 2002 Chaos, Solitons Fractals 14 529
[3] Lü J H, Chen G R and Zhang S C 2002 Int. J. Bifur. Chaos 12 2917
[4] Wu X Q and Lu J A 2003 Whuan University Journal of natural sciences 8 808
[5] Lu J A, Wu X Q and Lü J H 2002 Phys. Lett. A 6 365
[6] Tao C H, Lu J A and Lü J H 2002 Acta Phys. Sin. 51 1479 (in Chinese)
[7] Shan L, Li J and Wang Z H 2004 International Conference on Control, Automation, Robotics and Vision (Kunming, China 6-9 December) p 1928
[8] Lu J A, Tao C H, Lü J H and Liu M 2002 Chin. Phys. Lett. 19 632
[9] Cuomo K M and Oppenheim A V 1993 Phys. Rev. Lett. 71 65
[10] Hohl A, Gavrielides A, Erneux T and Kovanis V 1997 Phys. Rev. Lett. 78 4745
[11] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 521
[12] Pecora L M and Carroll T L 1991 Phys. Rev. A 44 2374
[13] Bao B C and Liu Z 2008 Chin. Phys. Lett. 25 2396
[14] Guan J B 2010 Chin. Phys. Lett. 27 020502
[15] Vincent U E 2008 Nonlinear Analysis: Modelling and Control 13 253
[16] Ge S S, Wang C and Lee T H 2000 Int. J. Bifur. Chaos 10 1149
[17] Wang X F and Chen G R 2000 Int. J. Bifur. Chaos 10 549
[18] Fujisaka H and Yamada T 1983 Prog. Theor. Phys. 69 32
[19] Pikovsky A S 1984 Z. Phys. B: Condens. Matter 55 149
[20] Li Z, Jiao L C and Lee J J 2008 Physica A 387 1369
[21] Stefanski A 2000 Chaos, Solitons Fractals 15 2443
[22] Stefanski A and Kapitaniak T 2000 Discrete Dyn. Nat. Soc. 4 207
[23] Stefanski A, Dabrowski A and Kapitaniak T 2005 Chaos Solitons Fractals 23 1651
[24] Liu G G and Zhao Y 2005 Chin. Phys. Lett. 5 1069
[25] Li S, Xu W and Li R 2007 Phys. Lett. A 361 98
[26] Zhou Q, Chen Z Q and Yuan Z Z 2008 Chin. Phys. Lett. 25 3169
[27] Corron N J, Pethel S D and Hopper B A 2000 Phys. Rev. Lett. 84 3835
[28] Wolf A, Swift J B, Swinney H L and Vastano J A 1985 Physica D 16 285
[29] Stefanski A and Kapitaniak T 2003 Int. J. Solid Struct. 40 5175
[30] Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80 2109
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 060505
[2] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 060505
[3] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 060505
[4] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 060505
[5] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 060505
[6] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 060505
[7] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 060505
[8] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 060505
[9] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 060505
[10] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 060505
[11] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 060505
[12] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 060505
[13] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 060505
[14] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 060505
[15] LI Qun-Hong**, CHEN Yu-Ming, QIN Zhi-Ying . Existence of Stick-Slip Periodic Solutions in a Dry Friction Oscillator[J]. Chin. Phys. Lett., 2011, 28(3): 060505
Viewed
Full text


Abstract