GENERAL |
|
|
|
|
Investigation of a Unified Chaotic System and Its Synchronization by Simulations* |
WU Qing-Chu1,2, FU Xin-Chu1, Michael Small3 |
1Department of Mathematics, Shanghai University, Shanghai 200444 2College of Mathematics and Information Science, Jiangxi Normal University, Nanchang 330022 3Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong |
|
Cite this article: |
WU Qing-Chu, FU Xin-Chu, Michael Small 2010 Chin. Phys. Lett. 27 060505 |
|
|
Abstract We investigate a unified chaotic system and its synchronization including feedback synchronization and adaptive synchronization by numerical simulations. We propose a new dynamical quantity denoted by K, which connects adaptive synchronization and feedback synchronization, to analyze synchronization schemes. We find that K can estimate the smallest coupling strength for a unified chaotic system whether it is complete feedback or one-sided feedback. Based on the previous work, we also give a new dynamical method to compute the leading Lyapunov exponent.
|
Keywords:
05.45.Pq
05.45.Xt
|
|
Received: 18 November 2009
Published: 25 May 2010
|
|
PACS: |
05.45.Pq
|
(Numerical simulations of chaotic systems)
|
|
05.45.Xt
|
(Synchronization; coupled oscillators)
|
|
|
|
|
[1] Chen G R and Ueta T 1999 Int. J. Bifur. Chaos 9 1465 [2] Lü J H, Zhou T S and Zhang S C 2002 Chaos, Solitons Fractals 14 529 [3] Lü J H, Chen G R and Zhang S C 2002 Int. J. Bifur. Chaos 12 2917 [4] Wu X Q and Lu J A 2003 Whuan University Journal of natural sciences 8 808 [5] Lu J A, Wu X Q and Lü J H 2002 Phys. Lett. A 6 365 [6] Tao C H, Lu J A and Lü J H 2002 Acta Phys. Sin. 51 1479 (in Chinese) [7] Shan L, Li J and Wang Z H 2004 International Conference on Control, Automation, Robotics and Vision (Kunming, China 6-9 December) p 1928 [8] Lu J A, Tao C H, Lü J H and Liu M 2002 Chin. Phys. Lett. 19 632 [9] Cuomo K M and Oppenheim A V 1993 Phys. Rev. Lett. 71 65 [10] Hohl A, Gavrielides A, Erneux T and Kovanis V 1997 Phys. Rev. Lett. 78 4745 [11] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 521 [12] Pecora L M and Carroll T L 1991 Phys. Rev. A 44 2374 [13] Bao B C and Liu Z 2008 Chin. Phys. Lett. 25 2396 [14] Guan J B 2010 Chin. Phys. Lett. 27 020502 [15] Vincent U E 2008 Nonlinear Analysis: Modelling and Control 13 253 [16] Ge S S, Wang C and Lee T H 2000 Int. J. Bifur. Chaos 10 1149 [17] Wang X F and Chen G R 2000 Int. J. Bifur. Chaos 10 549 [18] Fujisaka H and Yamada T 1983 Prog. Theor. Phys. 69 32 [19] Pikovsky A S 1984 Z. Phys. B: Condens. Matter 55 149 [20] Li Z, Jiao L C and Lee J J 2008 Physica A 387 1369 [21] Stefanski A 2000 Chaos, Solitons Fractals 15 2443 [22] Stefanski A and Kapitaniak T 2000 Discrete Dyn. Nat. Soc. 4 207 [23] Stefanski A, Dabrowski A and Kapitaniak T 2005 Chaos Solitons Fractals 23 1651 [24] Liu G G and Zhao Y 2005 Chin. Phys. Lett. 5 1069 [25] Li S, Xu W and Li R 2007 Phys. Lett. A 361 98 [26] Zhou Q, Chen Z Q and Yuan Z Z 2008 Chin. Phys. Lett. 25 3169 [27] Corron N J, Pethel S D and Hopper B A 2000 Phys. Rev. Lett. 84 3835 [28] Wolf A, Swift J B, Swinney H L and Vastano J A 1985 Physica D 16 285 [29] Stefanski A and Kapitaniak T 2003 Int. J. Solid Struct. 40 5175 [30] Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80 2109 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|