Chin. Phys. Lett.  2010, Vol. 27 Issue (6): 060502    DOI: 10.1088/0256-307X/27/6/060502
GENERAL |
Discrete Capability of the Lempel-Ziv Complexity Algorithm on a Vibration Sequence

LI Jian-Kang1, SONG Xiang-Rong1,2, YIN Ke1

1Department of Engineering Mechanics, Faculty of Science, Jiangsu University, Zhenjiang 212013 2School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003
Cite this article:   
LI Jian-Kang, SONG Xiang-Rong, YIN Ke 2010 Chin. Phys. Lett. 27 060502
Download: PDF(522KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Lempel-Ziv complexity (LZC) method is used to analyze the acceleration response of the T-shaped plate. The response is converted into symbolic sequences with the multi-segmented coarse-grained method. The LZC of the response of 240 points located in different areas near the center is calculated. The results show that LZC arithmetic applied to elastomer vibration can satisfy the discreteness condition.

Keywords: 05.45.Tp      02.70.Wz     
Received: 13 January 2010      Published: 25 May 2010
PACS:  05.45.Tp (Time series analysis)  
  02.70.Wz (Symbolic computation (computer algebra))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/6/060502       OR      https://cpl.iphy.ac.cn/Y2010/V27/I6/060502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Jian-Kang
SONG Xiang-Rong
YIN Ke
[1] Ishizaki R, Shinba T, Mugishima G, Haraguchi H and Inoue M 2008 Physica A 3145
[2] Li S C, Chang Q, Peng J and Wang Y L, 2009 Ecolog. Indicators 9 780
[3] Allison L, Stern L, Edgoose T and Dix T I 2000 Comput. Chem. 24 43
[4] Liu L W and Wang T M 2008 J. Theor. Biol. 251 159
[5] Jiang Z B, Yang H J and Wang J B 2009 Physica A 388 1299
[6] Wang G L, Huang S Y, Zhang Y Y and Liang P J 2007 Chin. Phys. Lett. 24 271
[7] Huang Z G, Wu Z X, Guan J Y and Wang Y H 2006 Chin. Phys. Lett. 23 3119
[8] Shen D, Wang W X, Jiang Y M, He Y and He D R 2007 Chin. Phys. Lett. 24 2146
[9] Hartmann M, Pauline C Haddow and Lehre P K 2007 Biosystems 87 224
[10] Delattre S, Graf S, Luschgy H and Pagés G 2006 J. Math. Anal. Appl. 2 507
[11] Graf S, Luschgy H and Pagés G 2007 J. Approx. Theor. 1 27
[12] Xie X X, Li S and Li J K 2006 J. Jiangsu University (Natural Science Edition) 27 545 (in Chinese)
[13] Ke D G, Zhang H and Tong Q Y 2005 Acta Phys. Sin. 54 534 (in Chinese)
[14] Zhang D Z 2007 Acta Phys. Sin. 56 3152 (in Chinese)
[15] Lempel A and Ziv J 1976 IEEE Trans. Inform. Theor. 1 75
[16] Kaspar F and Schuster H G 1987 Phys. Rev. A 36 842
[17]Sun K H, Tan G Q and Sheng L Y 2008 Acta Phys. Sin. 57 3359 (in Chinese)
[18]Natanson I P 1964 Theory of Functions of a Real Variable (New York: Frederick)
Related articles from Frontiers Journals
[1] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 060502
[2] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 060502
[3] KONG De-Ren, XIE Hong-Bo** . Assessment of Time Series Complexity Using Improved Approximate Entropy[J]. Chin. Phys. Lett., 2011, 28(9): 060502
[4] M. T. Darvishi**, Mohammad Najafi . A Modification of Extended Homoclinic Test Approach to Solve the (3+1)-Dimensional Potential-YTSF Equation[J]. Chin. Phys. Lett., 2011, 28(4): 060502
[5] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 060502
[6] QU Jing-Yi**, WANG Ru-Bin, ZHANG Yuan, DU Ying . A Neurodynamical Model for Selective Visual Attention[J]. Chin. Phys. Lett., 2011, 28(10): 060502
[7] YANG Yue, HU Han-Ping, XIONG Wei, CHEN Jiang-Hang . Network Traffic Anomaly Detection Method Based on a Feature of Catastrophe Theory[J]. Chin. Phys. Lett., 2010, 27(6): 060502
[8] DU Ying, LU Qi-Shao. Noise Effects on Temperature Encoding of Neuronal Spike Trains in a Cold Receptor[J]. Chin. Phys. Lett., 2010, 27(2): 060502
[9] DING Gang, LIN Lin, ZHONG Shi-Sheng. Functional Time Series Prediction Using Process Neural Network[J]. Chin. Phys. Lett., 2009, 26(9): 060502
[10] CAI Chao-Feng, ZHANG Ying-Ying, LIU Xue, LIANG Pei-Ji, ZHANG Pu-Ming. Detecting Determinism in Firing Activities of Retinal Ganglion Cells during Response to Complex Stimuli[J]. Chin. Phys. Lett., 2008, 25(5): 060502
[11] WEI Guang-Mei, GAO Yi-Tian, XU Tao, MENG Xiang-Hua, ZHANG Chun-Yi. Painleve Property and New Analytic Solutions for a Variable-Coefficient Kadomtsev--Petviashvili Equation with Symbolic Computation[J]. Chin. Phys. Lett., 2008, 25(5): 060502
[12] ZHANG Chun-Yi, LI Juan, MENG Xiang-Hua, XU Tao, GAO Yi-Tian,. Existence of Formal Conservation Laws of a Variable-Coefficient Korteweg--de Vries Equation from Fluid Dynamics and Plasma Physics via Symbolic Computation[J]. Chin. Phys. Lett., 2008, 25(3): 060502
[13] QIU Tian, CHEN Guang. Spread and Quote-Update Frequency of the Limit-Order Driven Sergei Maslov Model[J]. Chin. Phys. Lett., 2007, 24(8): 060502
[14] DING Liang-Jing, PENG Hu, CAI Shi-Min, ZHOU Pei-Ling. Multifractal Analysis of Human Heartbeat in Sleep[J]. Chin. Phys. Lett., 2007, 24(7): 060502
[15] MENG Qing-Fang, PENG Yu-Hua, LIU Yun-Xia, SUN Wei-Feng. Analyses of Optimal Embedding Dimension and Delay for Local Linear Prediction Model[J]. Chin. Phys. Lett., 2007, 24(7): 060502
Viewed
Full text


Abstract