Chin. Phys. Lett.  2010, Vol. 27 Issue (6): 060501    DOI: 10.1088/0256-307X/27/6/060501
GENERAL |
Network Traffic Anomaly Detection Method Based on a Feature of Catastrophe Theory

YANG Yue1,2, HU Han-Ping1, XIONG Wei1, CHEN Jiang-Hang1


1Institute for Pattern Recognition and Artificial Intelligence, Huazhong University of Science and Technology, Wuhan 430074 2School of Electronic Information and Mechanics, China University of Geosciences, Wuhan 430074
Cite this article:   
YANG Yue, HU Han-Ping, XIONG Wei et al  2010 Chin. Phys. Lett. 27 060501
Download: PDF(296KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

For the existing problems of current network traffic anomaly detection, the behavior of the network traffic anomaly will show nonlinearity, non-stationarity and complexity according to the network traffic often driven by the control of multiple factors. Owing to the characteristic that the internal evolution equation will lead to dynamical structure catastrophe, the phase space reconstruction method and the statistical physics method can be used to compute the macro feature values of the network traffic. By choosing some of the feature values which can obviously reflect the unusual change in the network traffic volume as control variables, a network traffic anomaly detection method based on the catastrophe series theory model is developed. Many experimental results show that the proposed network traffic anomaly detection method has a low false alarm rate under the same condition of detection rate.

Keywords: 05.45.Tp      02.50.Ey      02.70.Rr     
Received: 25 November 2009      Published: 25 May 2010
PACS:  05.45.Tp (Time series analysis)  
  02.50.Ey (Stochastic processes)  
  02.70.Rr (General statistical methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/6/060501       OR      https://cpl.iphy.ac.cn/Y2010/V27/I6/060501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Yue
HU Han-Ping
XIONG Wei
CHEN Jiang-Hang
[1] Box G, Jenkins G M and Reinsel G 1994 Time Series Analysis: Forecasting and Control (Hoboken: John Wiley & Sons, Inc.) chap 3 p 47
[2] Adas A 1997 IEEE Commun. Mag. 35 601746
[3] Sang A M and Li S Q 2002 Comput. Networks 34 329
[4] Hosking J R M 1981 Biometrika 68 165
[5] Shu Y T, Wang L and Zhang L F 2001 Chin. J. Comput. 24 46 (in Chinese)
[6] Lee S C and Heinbuch D V 2001 IEEE Trans. Syst. Man. Cybern. A 31 294
[7] Bonifacio J and Camsian A 1998 IEEE International Joint Conference on Neural Networks (Anchorage, Alaska 4-9 May 1998) p 205
[8] WANG X and FANG B X 2005 J. Harbin Inst. Technol. 37 1046 (in Chinese)
[9] Xiang Y, Lin Y, Lei W L and Huang S J 2004 IEE Proc. Commun. 151 292
[10] Li L and Lee G 2005 Telecommun. Syst. 28 1018
[11] Yuan J R and Yong J 2001 Acta Phys. Sin. 50 1221 (in Chinese)
[12] YANG D P and LIN H Y 2009 Chin.~Phys. Lett. 26 068902
[13] Svensson A, Holst J, Lindquist R and Lindgren G 1996 J. Time Ser. Anal . 17 511
[14] Arnol'd V I 2009 Dynamical Systems V: Bifurcation Theory and Catastrophe Theory (Beijing: Science Press) chap 2 p160
[15] Saunders P T 1995 An Introduction to Catastrophe Theory (Cambridge: Cambridge University) Chap 2 p 41
[16] Lippmann R, Haines J W and Fried D J 2000 Comput. Networks 34 579
[17] Robin S and Vern P 2003 The 10th ACM Conference on Computer and Communications Security (Washington DC 27-31 October 2003) p 265
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 060501
[2] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 060501
[3] KONG De-Ren, XIE Hong-Bo** . Assessment of Time Series Complexity Using Improved Approximate Entropy[J]. Chin. Phys. Lett., 2011, 28(9): 060501
[4] LÜ, Yan**, BAO Jing-Dong . Inertial Lévy Flight with Nonlinear Friction[J]. Chin. Phys. Lett., 2011, 28(11): 060501
[5] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 060501
[6] QU Jing-Yi**, WANG Ru-Bin, ZHANG Yuan, DU Ying . A Neurodynamical Model for Selective Visual Attention[J]. Chin. Phys. Lett., 2011, 28(10): 060501
[7] C. F. Lo. Dynamics of Fokker-Planck Equation with Logarithmic Coefficients and Its Application in Econophysics[J]. Chin. Phys. Lett., 2010, 27(8): 060501
[8] ZHANG Li, CAO Li. Effect of Correlated Noises in a Genetic Model[J]. Chin. Phys. Lett., 2010, 27(6): 060501
[9] LI Jian-Kang, SONG Xiang-Rong, YIN Ke. Discrete Capability of the Lempel-Ziv Complexity Algorithm on a Vibration Sequence[J]. Chin. Phys. Lett., 2010, 27(6): 060501
[10] DU Ying, LU Qi-Shao. Noise Effects on Temperature Encoding of Neuronal Spike Trains in a Cold Receptor[J]. Chin. Phys. Lett., 2010, 27(2): 060501
[11] DING Gang, LIN Lin, ZHONG Shi-Sheng. Functional Time Series Prediction Using Process Neural Network[J]. Chin. Phys. Lett., 2009, 26(9): 060501
[12] MENG Qing-Kuan, ZHU Jian-Yang. Self-Organization of Weighted Networks in Connection with the Misanthrope Process[J]. Chin. Phys. Lett., 2009, 26(8): 060501
[13] CAI Chao-Feng, ZHANG Ying-Ying, LIU Xue, LIANG Pei-Ji, ZHANG Pu-Ming. Detecting Determinism in Firing Activities of Retinal Ganglion Cells during Response to Complex Stimuli[J]. Chin. Phys. Lett., 2008, 25(5): 060501
[14] QIU Tian, CHEN Guang. Spread and Quote-Update Frequency of the Limit-Order Driven Sergei Maslov Model[J]. Chin. Phys. Lett., 2007, 24(8): 060501
[15] DING Liang-Jing, PENG Hu, CAI Shi-Min, ZHOU Pei-Ling. Multifractal Analysis of Human Heartbeat in Sleep[J]. Chin. Phys. Lett., 2007, 24(7): 060501
Viewed
Full text


Abstract