Chin. Phys. Lett.  2010, Vol. 27 Issue (6): 060302    DOI: 10.1088/0256-307X/27/6/060302
GENERAL |
Late-Time Evolution of the Phantom Scalar Perturbation in the Background of a Spherically Symmetric Static Black Hole

PAN Qi-Yuan, JING Ji-Liang

Institute of Physics and Department of Physics, Hunan Normal University, Changsha 410081
Cite this article:   
PAN Qi-Yuan, JING Ji-Liang 2010 Chin. Phys. Lett. 27 060302
Download: PDF(275KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The late-time evolution of the phantom scalar perturbation is investigated in the spacetime of a four-dimensional spherically symmetric static black hole. It is revealed that the asymptotic tail of the phantom scalar field is dominated by the growth behavior t-(l+3/2)eμt, which depends on the multipole moment l and the field massμ but is independent of the mass M and charge Q of the black hole. This growth behavior is in strong contrast to the decaying tail of the usual massive scalar perturbation and shows that the external phantom scalar perturbation is unstable in the spherically symmetric static black hole spacetime.

Keywords: 03.65.Pm      04.30.Nk      04.70.Bw      97.60.Lf     
Received: 02 February 2010      Published: 25 May 2010
PACS:  03.65.Pm (Relativistic wave equations)  
  04.30.Nk (Wave propagation and interactions)  
  04.70.Bw (Classical black holes)  
  97.60.Lf (Black holes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/6/060302       OR      https://cpl.iphy.ac.cn/Y2010/V27/I6/060302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
PAN Qi-Yuan
JING Ji-Liang
[1] Ruffini R and Wheeler J A 1971 Phys. Today 24 30
[2] Misner C W, Thorne K S and Wheeler J A 1973 Gravitation (San Francisco: Freeman)
[3] Price R H 1972 Phys. Rev. D 5 2419
[4] Hod S and Piran T 1998 Phys. Rev. D 58 024017
Hod S and Piran T 1998 Phys. Rev. D 58 024018
Hod S and Piran T 1998 Phys. Rev. D 58 024019
[5] Barack L and Ori A 1999 Phys. Rev. Lett. 82 4388
[6] Jing J L and Ding C K 2008 Chin. Phys. Lett. 25 858
[7] Pan Q Y and Jing J L 2008 Class. Quantum Grav. 25 038002
[8] Hod S 2009 Class. Quantum Grav. 26 028001
[9] Burko L M and Khanna G 2009 Class. Quantum Grav. 26 015014
[10] Zhang Y, Wang C Y, Gui Y X, Wang F J and Yu F 2009 Chin. Phys. Lett. 26 030401
[11] Hod S and Piran T 1998 Phys. Rev. D 58 044018
[12] Koyama H and Tomimatsu A 2001 Phys. Rev. D 63 064032
Koyama H and Tomimatsu A 2001 Phys. Rev. D 64 044014
[13] Yu H W 2002 Phys. Rev. D 65 087502
[14] Jing J L 2004 Phys. Rev. D 70 065004
Jing J L 2005 Phys. Rev. D 72 027501
[15] He X and Jing J L 2006 Nucl. Phys. B 755 313
[16] Konoplya R A, Zhidenko A and Molina C 2007 Phys. Rev. D 75 084004
[17] Moderski R and Rogatko M 2008 Phys. Rev. D 77 124007
[18] Gibbons G W and Rogatko M 2008 Phys. Rev. D 77 044034
[19] Chen S B, Jing J L and Pan Q Y 2009 Phys. Lett. B 670 276
[20] Chen S B and Jing J L 2009 J. High Energy Phys. 03 081
[21] He X, Wang B, Wu S F and Lin C Y 2009 Phys. Lett. B 673 156
[22] Rogatko M and Szyplowska A 2009 arXiv:0905.4342 [hep-th]
[23] Berti E, Cardoso V and Starinets A O 2009 arXiv:0905.2975 [gr-qc]
[24] Candelas P 1980 Phys. Rev. D 21 2185
[25] Weinberg S 1989 Rev. Mod. Phys. 61 1
[26] Ohta N 2003 Phys. Rev. Lett. 91 061303
Ohta N 2003 Prog. Theor. Phys. 110 269
[27] Gutperle M, Kallosh R and Linde A 2003 J. Cosmol. Astropart. Phys. 07 001
[28] Gundlach C, Price R H and Pullin J 1994 Phys. Rev. D 49 883
[29] Leaver E W 1986 Phys. Rev. D 34 384
[30] Chandrasekhar S 1983 The Mathematical Theory of Black Holes (Oxford: Oxford University)
[31] Abramowitz M and Stegun I A 1970 Handbook of Mathematical Functions (New York: Dover)
[32] Wang B, Abdalla E and Mann R B 2002 Phys. Rev. D 65 084006
Related articles from Frontiers Journals
[1] Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity[J]. Chin. Phys. Lett., 2012, 29(5): 060302
[2] ZHANG Bao-Cheng, CAI Qing-Yu, ZHAN Ming-Sheng. Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling[J]. Chin. Phys. Lett., 2012, 29(2): 060302
[3] M. Sharif**, G. Abbas. Phantom Energy Accretion by a Stringy Charged Black Hole[J]. Chin. Phys. Lett., 2012, 29(1): 060302
[4] LIU Yan, JING Ji-Liang**. Propagation and Evolution of a Scalar Field in Einstein–Power–Maxwell Spacetime[J]. Chin. Phys. Lett., 2012, 29(1): 060302
[5] M Sharif**, G Abbas . Phantom Accretion onto the Schwarzschild de-Sitter Black Hole[J]. Chin. Phys. Lett., 2011, 28(9): 060302
[6] HUANG Zeng-Guang**, FANG Wei, , LU Hui-Qing, . Inflation and Singularity of a Bianchi Type-VII0 Universe with a Dirac Field in the Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(8): 060302
[7] ZHU Yin . Measurement of the Speed of Gravity[J]. Chin. Phys. Lett., 2011, 28(7): 060302
[8] Faiz-ur-Rahman, Salahuddin, M. Akbar** . Generalized Second Law of Thermodynamics in Wormhole Geometry with Logarithmic Correction[J]. Chin. Phys. Lett., 2011, 28(7): 060302
[9] HE Liang, HUANG Chang-Yin, WANG Ding-Xiong** . A Constraint of Black Hole Mass and the Inner Edge Radius of Relativistic Accretion Disc[J]. Chin. Phys. Lett., 2011, 28(3): 060302
[10] CAO Guang-Tao**, WANG Yong-Jiu . Interference Phase of Mass Neutrino in Schwarzschild de Sitter Field[J]. Chin. Phys. Lett., 2011, 28(2): 060302
[11] HUANG Zeng-Guang**, FANG Wei, LU Hui-Qing, ** . Inflation and Singularity in Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(2): 060302
[12] LIU Tong**, XUE Li . Gravitational Instability in Neutrino Dominated Accretion Disks[J]. Chin. Phys. Lett., 2011, 28(12): 060302
[13] YANG Xiao-Song, LIU San-Qiu, **, LI Xiao-Qing, . Modulational Instability for Gravitoelectromagnetic Perturbations with Longitudinal and Transverse Modes[J]. Chin. Phys. Lett., 2011, 28(10): 060302
[14] GUO Guang-Hai**, DING Xia . Area Spectra of Schwarzschild-Anti de Sitter Black Holes from Highly Real Quasinormal Modes[J]. Chin. Phys. Lett., 2011, 28(10): 060302
[15] Marina-Aura Dariescu**, Ciprian Dariescu, Ovidiu Buhucianu . Charged Scalars in Transient Stellar Electromagnetic Fields[J]. Chin. Phys. Lett., 2011, 28(1): 060302
Viewed
Full text


Abstract