Chin. Phys. Lett.  2010, Vol. 27 Issue (6): 060201    DOI: 10.1088/0256-307X/27/6/060201
GENERAL |
Numerical Solution of the Three-Dimensional Helmholtz Equation
Syed Tauseef Mohyud-Din1**, Ahmet Yιldιrιm2
Cite this article:   
Syed Tauseef Mohyud-Din, Ahmet Yιldιrιm 2010 Chin. Phys. Lett. 27 060201
Download: PDF(1049KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We apply the homotopy analysis method to solve the nonhomogeneous multidimensional partial differential equation model problem. The analytic solutions are calculated in terms of convergent series with easily computable components. The nonhomogeneous problem is quickly solved by observing the self-canceling “noise” terms whose sum vanishes in the limit. Numerical results clearly reveal the complete reliability and efficiency of the proposed algorithm.

Keywords: 02.30.Jr      02.30.Mv      02.60.Cb     
Received: 31 December 2009      Published: 25 May 2010
PACS:  02.30.Jr (Partial differential equations)  
  02.30.Mv (Approximations and expansions)  
  02.60.Cb (Numerical simulation; solution of equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/6/060201       OR      https://cpl.iphy.ac.cn/Y2010/V27/I6/060201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Syed Tauseef Mohyud-Din
Ahmet Yιldιrιm
[1] Qin H H and Wei T 2010 Appl. Math. Model. 34 947
[2] Gillman A, Djellouli R and Amara M 2007 J. Comput. Appl. Math. 204 515
[3] Noor M A and Mohyud-Din S T 2007 Arab. J. Math. Math. Sci. 1 13
[4] Adomian G 1995 Solving Frontier Problems of Physics: The Decomposition Method (Boston: Kluwer Academic)
[5] Howard C E and Dianne P O 1998 J. Comput. Phys. 142 163
[6] Howard C E and Dianne P O 1999 Numerische Mathematik 83 231
[7] Evans D J and Ahmad A R 1998 Int. J. Comput. Math. 68 381
[8] Evans D J, Ergüt M and Bulut H 2003 Int. J. Comput. Math. 80 1189
[9] Liao S J 2004 Int. J. Non-Linear Mech. 39 271
[10] Liao S J 1992 PhD Dissertation (Shanghai: Shanghai Jiao Tong University)
[11] Liao S J 1995 Int. J. Non-Linear Mech. 30 371
[12] Liao S J 1997 Int. J. Non-Linear Mech. 32 815
[13] Liao S J 1999 Int. J. Non-Linear Mech. 34 759
[14] Liao S J 2003 Beyond Perturbation: Introduction to the Homotopy Analysis Method (Boca Raton: CRC)
[15] Liao S J 2004 Appl. Math. Comput. 147 499
[16] Liao S J and Campo A 2002 J. Fluid Mech. 453 411
[17] Liao S J 2003 J. Fluid Mech. 488 189
[18] Ayub M, Rasheed A and Hayat T 2003 Int. J. Eng. Sci. 41 2091
[19] Hayat T, Khan M and Asghar S 2004 Acta Mech. 168 213
[20] Hayat T, Khan M and Asghar S 2004 Appl. Math. Comput. 155 417
[21] Abbasbandy S 2007 Int. Comm. Heat Mass Transfer 34 380
[22] Abbasbandy S 2007 Phys. Lett. A 361 478
[23] Abbasbandy S 2008 Chem. Eng. J. 136 144
[24] Bataineh A S, Noorani M S M and Hashim I 2008 Commun. Nonlin. Sci. Numer. Simulat. 13 2060
[25] Xu H, Liao S J and You X C 2009 Commun. Nonlin. Sci. Numer. Simulat. 14 1152
[26] Xu H and Cang J 2008 Phys. Lett. A 372 1250
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 060201
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 060201
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 060201
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 060201
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 060201
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 060201
[7] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 060201
[8] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation[J]. Chin. Phys. Lett., 2012, 29(3): 060201
[9] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 060201
[10] LI Zhi-Ming, JIANG Hai-Ying, HAN Yan-Bin, LI Jin-Ping, YIN Jian-Qin, ZHANG Jin-Cheng. Temperature Uniformity of Wafer on a Large-Sized Susceptor for a Nitride Vertical MOCVD Reactor[J]. Chin. Phys. Lett., 2012, 29(3): 060201
[11] LI Shao-Wu, WANG Jian-Ping. Finite Spectral Semi-Lagrangian Method for Incompressible Flows[J]. Chin. Phys. Lett., 2012, 29(2): 060201
[12] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 060201
[13] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 060201
[14] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 060201
[15] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 060201
Viewed
Full text


Abstract