Chin. Phys. Lett.  2010, Vol. 27 Issue (5): 057302    DOI: 10.1088/0256-307X/27/5/057302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Shape-Controlled Synthesis and Related Growth Mechanism of Pb(OH)2 Nanorods by Solution-Phase Reaction
CHENG Jin1,2,3, ZOU Xiao-Ping2,3, SONG Wei-Li4, CAO Mao-Sheng4, SU Yi2,3, YANG Gang-Qiang2,3, Lü Xue-Ming2,3, ZHANG Fu-Xue2,3
1School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876 2Research Center for Sensor Technology, Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Jianxiangqiao Campus, Beijing 100101 3Ministry-of-Education Key Laboratory for Modern Measurement and Control Technology, Beijing 100101 4School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081
Cite this article:   
CHENG Jin, ZOU Xiao-Ping, SONG Wei-Li et al  2010 Chin. Phys. Lett. 27 057302
Download: PDF(957KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We present a simple method to synthesize Pb(OH)2 nanorods by solution-phase reaction. Rod-like lead hydroxide precipitates are obtained by mixing lead nitrate with a concentration of about 0.01 M and potassium hydroxide with concentration of about 0.03 M in an aqueous solution. Sodium chloride as an additive is premixed with the lead nitrate aqueous solution. The presence of chloride ions in the precursor solution results in the rod-like morphology of lead hydroxide precipitates. The growth mechanism of the lead hydroxide nanorods is discussed.

Keywords: 73.63.Bd      81.07.Bc      81.10.Dn     
Received: 17 January 2010      Published: 23 April 2010
PACS:  73.63.Bd (Nanocrystalline materials)  
  81.07.Bc (Nanocrystalline materials)  
  81.10.Dn (Growth from solutions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/5/057302       OR      https://cpl.iphy.ac.cn/Y2010/V27/I5/057302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHENG Jin
ZOU Xiao-Ping
SONG Wei-Li
CAO Mao-Sheng
SU Yi
YANG Gang-Qiang
Lü Xue-Ming
ZHANG Fu-Xue
[1] Li N, Huang Y, Du F, He X B, Lin X, Gao H J, Ma Y F, Li F F, Chen Y S and Eklund P C 2006 Nano Lett. 6 1141
[2] Long Y Z, Yin Z H and Chen Z J 2008 J. Phys. Chem. C 112 11507
[3] Zhang Y, Xiang Q, Xu J Q, Xu P C, Pan Q Y and Li F 2009 J. Mater. Chem. 19 4701
[4] Long Y Z, Duvail J L, Chen Z J, Jin A Z and Gu C Z 2008 Chin. Phys. Lett. 25 3474
[5] Deng Y, Xiang Y and Song Y Z 2009 Cryst. Growth Des. 9 3079
[6] Shi X L, Cao M S, Yuan J, Zhao Q L, Kang Y Q, Fang X Y and Chen Y J 2008 Appl. Phys. Lett. 93 183118
[7] Shi X L, Cao M S, Fang X Y, Yuan J, Kang Y Q and Song W L 2008 Appl. Phys. Lett. 93 223112
[8] Che R C, Peng L M, Duan X F, Chen Q and Liang X L 2004 Adv. Mater. 16 401
[9] Song W L, Cao M S, Hou Z L, Fang X Y, Shi X L and Yuan J 2009 Appl. Phys. Lett. 94 233110
[10] Long Y Z, Zhang L J, Chen Z J, Huang K, Yang Y S, Xiao H M, Wan M X, Jin A Z and Gu C Z 2005 Phys. Rev. B 71 165412
[11] Cao M S, Shi X L, Fang X Y, Jin H B, Hou Z L, Zhou W and Chen Y J 2007 Appl. Phys. Lett. 91 203110
[12] Sheng L M, Gao W, Cao S X and Zhang J C 2008 Chin. Phys. Lett. 25 3397
[13] Shi X L, Cao M S, Yuan J and Fang X Y 2009 Appl. Phys. Lett. 95 163108
[14] Deng Y, Zhang Y J, Xiang Y, Wang G S and Xu H B 2009 J. Mater. Chem. 19 2058
[15] Liu H S, Fang X Y, Song W L, Hou Z L, Lu R, Yuan J and Cao M S 2009 Chin. Phys. Lett. 26 067101
[16] Liang H Y, Yang H X, Wang W Z, Li J Q and Xu H X 2009 J. Am. Chem. Soc. 131 6068
[17] Qiu W, Kang Y L, Lei Z K, Qin Q H and Li, Q 2009 Chin. Phys. Lett. 26 080701
[18] Wang S, Lu H J, Tu Y S, Wang C L and Fang H P 2009 Chin. Phys. Lett. 26 068702
[19] Song W L, Cao M S, Hou Z L, Yuan J and Fang X Y 2009 Scripta Mater. 61 201
[20] Li E, Cheng Z X, Xu J Q, Pan Q Y, Yu W J and Chu Y L 2009 Cryst. Growth Des. 9 2146
[21] Tao J, Lu Y H, Zheng R S, Lin K Q, Xie Z G, Luo Z F, Li S L, Wang P and Ming H 2008 Chin. Phys. Lett. 25 4459
[22] Nie C, Zhang R, Xie Z L, Xiu X Q, Liu B, Fu D Y, Liu Q J, Han P, Gu S L, Shi Y and Zheng Y D 2008 Chin. Phys. Lett. 25 1780
[23] Wang H H, Shi Y J, William C and Yigal B 2008 Chin. Phys. Lett. 25 234
[24] Feldman D G 1962 J. Cell Biol. 15 592
[25] Normann T C 1964 Stain Technol. 39 50
[26] Roach W A 1958 Annals of Botany 22 127
[27] Todd G and Parry E 1964 Nature 202 386
[28] Yurkinshii V P, Firsova E G and Petrova N V 2005 Russian J. Appl. Chem. 78 1370
[29] Perera W N, Hefter G and Sipos P M 2001 Inorg. Chem. 40 3974
[30] Sole M J and Yoffe A D 1963 Nature 198 1262
[31] Veluchamy P and Minoura H 1996 J. Mater. Sci. Lett. 15 1705
[32] Chen Z T and Gao L 2006 J. Cryst. Growth 293 522
[33] Pradhan D and Leung K T 2008 Langmuir 24 9707
Related articles from Frontiers Journals
[1] ZHU Li-Dan, SUN Fang-Yuan, ZHU Jie, TANG Da-Wei, LI Yu-Hua, GUO Chao-Hong. Nano-Metal Film Thermal Conductivity Measurement by using the Femtosecond Laser Pump and Probe Method[J]. Chin. Phys. Lett., 2012, 29(6): 057302
[2] LI Ping-Yun, ZHANG Xi-Yan, NI Hai-Tao, CAO Zhen-Hua, MENG Xiang-Kang. Deformation Induced Internal Friction Peaks in Nanocrystalline Nickel[J]. Chin. Phys. Lett., 2012, 29(2): 057302
[3] YANG Yan-Ning, ZHANG Zhi-Yong**, ZHANG Fu-Chun, DONG Jun-Tang, ZHAO Wu, ZHAI Chun-Xue, ZHANG Wei-Hu. The Field Emission Characteristics of Titanium-Doped Nano-Diamonds[J]. Chin. Phys. Lett., 2012, 29(1): 057302
[4] LI Ping-Yun, CAO Zhen-Hua, JIANG Zhong-Hao, MENG Xiang-Kang** . FMAA-MS Investigation into Ni68Fe32 Nanoalloy with Sample Length Less than 30mm[J]. Chin. Phys. Lett., 2011, 28(8): 057302
[5] LIU Zhao-Sen**, Sechovský, Vladimir, Divi&#, Martin . Magnetic Properties of a Rare-Earth Antiferromagnetic Nanoparticle Investigated with a Quantum Simulation Model[J]. Chin. Phys. Lett., 2011, 28(6): 057302
[6] LI Shang-Sheng, LI Xiao-Lei, MA Hong-An, SU Tai-Chao, XIAO Hong-Yu, HUANG Guo-Feng, LI Yong, ZHANG Yi-Shun, JIA Xiao-Peng, ** . Reaction Mechanism of Al and N in Diamond Growth from a FeNiCo-C System[J]. Chin. Phys. Lett., 2011, 28(6): 057302
[7] GUO Xiao-Song, BAO Zhong, ZHANG Shan-Shan, XIE Er-Qing** . A Novel Model of the H Radical in Hot-Filament Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2011, 28(2): 057302
[8] GUO Xiao-Song, ZHANG Shan-Shan, BAO Zhong, ZHANG Hong-Liang, CHEN Chang-Cheng, LIU Li-Xin, LIU Yan-Xia, XIE Er-Qing** . Effect of Substrate Temperature on the Structural, Electrical and Optical Properties of Nanocrystalline Silicon Films in Hot-Filament Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2011, 28(2): 057302
[9] ZHAO Jing, MIAO Hong**, DUAN Li, KANG Qi, HE Ling-Hui . In Situ Observation of NaCl Crystal Growth by the Vapor Diffusion Method with a Mach–Zehnder Interferometer[J]. Chin. Phys. Lett., 2011, 28(10): 057302
[10] LV Shi-Cheng, GE Zhong-Yang, ZHOU Yue, XU Bo, GAO Li-Gang, YIN Jiang, XIA Yi-Dong, LIU Zhi-Guo . A Charge-Trap Memory Device with a Composition-Modulated Zr-Silicate High-k Dielectric Multilayer Structure[J]. Chin. Phys. Lett., 2010, 27(6): 057302
[11] HUANG Qing-Song, DONG Dong-Qing, XU Jian-Ping, ZHANG Xiao-Song, ZHANG Hong-Min, LI Lan. White Emitting ZnS Nanocrystals: Synthesis and Spectrum Characterization[J]. Chin. Phys. Lett., 2010, 27(5): 057302
[12] SHAO Jia-Feng, A. G. U. Perera, P. V. V. Jayaweera, HE De-Yan. Low-Cost UV-IR Dual Band Detector Using Nonporous ZnO Film Sensitized by PbS Quantum Dots[J]. Chin. Phys. Lett., 2010, 27(2): 057302
[13] MENG Ling-Rong, CHEN Wei-Meng, CHEN Chin-Ping, ZHOU He-Ping, PENG Qing**. Preparation, Morphology Transformation and Magnetic Behavior of Co3O4 Nano-Leaves[J]. Chin. Phys. Lett., 2010, 27(12): 057302
[14] MAO Ping, ZHANG Zhi-Gang, PAN Li-Yang, XU Jun, CHEN Pei-Yi. Nonvolatile Memory Characteristics with Embedded High Density Ruthenium Nanocrystals[J]. Chin. Phys. Lett., 2009, 26(5): 057302
[15] MAO Ping, ZHANG Zhi-Gang, PAN Li-Yang, XU Jun, CHEN Pei-Yi. High-Density Stacked Ru Nanocrystals for Nonvolatile Memory Application[J]. Chin. Phys. Lett., 2009, 26(4): 057302
Viewed
Full text


Abstract