Chin. Phys. Lett.  2010, Vol. 27 Issue (5): 054101    DOI: 10.1088/0256-307X/27/5/054101
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Rayleigh Scattering for An Electromagnetic Anisotropic Medium Sphere
LI Ying-Le, WANG Ming-Jun, DONG Qun-Feng, TANG Gao-Feng
Box 399, Institute of Radio Wave Propagation and Scattering, Xianyang Normal University, Xianyang 712000
Cite this article:   
LI Ying-Le, WANG Ming-Jun, DONG Qun-Feng et al  2010 Chin. Phys. Lett. 27 054101
Download: PDF(492KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the scales theory of electromagnetic waves, the analytical expression of electrical fields inside an anisotropic medium sphere is studied. Differential scattering cross section and radar cross section (RCS) for an anisotropic spherical target are presented. The correctness of the obtained results is tested. The simulation results show that the scattering of an anisotropic sphere has the property of a dipole radiation under the condition of Rayleigh scattering. The larger the dielectric constant is, the stronger the dipole scattering is. Anisotropy in magnetism only has an effect on differential RCS. These results provide a theoretical base for the identification of anisotropic targets.
Keywords: 41.20.Jb      42.25.Fx     
Received: 11 June 2009      Published: 23 April 2010
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.25.Fx (Diffraction and scattering)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/5/054101       OR      https://cpl.iphy.ac.cn/Y2010/V27/I5/054101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Ying-Le
WANG Ming-Jun
DONG Qun-Feng
TANG Gao-Feng
[1] Jiang Y Y, Shi H Y, Zhang Y Q, Hou C F and Sun X D 2007 Chin. Phys. 16 1959
[2] Sun Y Z, Ran L X, Peng L, Wang W G, Li T, Zhao X and Chen Q L 2009 Chin. Phys. 18 174
[3] Yu W D, Hua F, Jin M B, Pan Z D and Yuan Y L 1998 Chin. Phys. Lett. 15 931
[4] Luo W, Zhang M, Zhou P 2009 Chin. Phys. Lett. 26 4101
[5] Meng F Y, Wu Q, Fu J H, Gu X M and Li L W 2008 Acta Phys. Sin. 57 6213 (in Chinese)
[6] Zhou J H, Luo H L, Wen S C, Fang A L and Zhuang B X 2009 Acta Phys. Sin. 58 1765 (in Chinese)
[7] Collin R E 1991 Field Theory of Guided Waves (New York: McGraw2Hill)
[8] Graglia R D and Vslenghi P E 1987 IEEE Trans. Antennas Propagat. 35 225
[9] Ren W 1993 Phys. Rev. E 47 664
[10] Zheng H X and Ge D B 2000 Acta Phys. Sin. 49 1702 (in Chinese)
[11] Smythe W R 1968 Static and Dynamic Electrcity (New York: McGraw2Hill)
[12] Li Y L and Huang J Y 2005 Chin. Phys. 14 646
[13] Li Y L and Huang J Y 2006 Scales Transformation Theory of Electromagnetic Field and Its Applications (Xian: Xidian University Press) (in Chinese)
[14] Ishimaru A 1978 Wave Propagation and Scattering in Random Medium (New York: Academic)
[15] Wang Y P and Chen D Z 1985 Electrodynamics in Engineering (Xian: Xidian University Press) (in Chinese)
[16] Li Y L and Wang M J 2009 Chin. Phys. B 18 2420
Related articles from Frontiers Journals
[1] ZHOU Hai-Chun, YANG Guang, WANG Kai, LONG Hua, LU Pei-Xiang. Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film[J]. Chin. Phys. Lett., 2012, 29(6): 054101
[2] ZHANG Li-Wei, ZHANG Ye-Wen, HE Li, WANG You-Zhen. Experimental Study of Tunneling modes in Photonic Crystal Heterostructure Consisting of Single-Negative Materials[J]. Chin. Phys. Lett., 2012, 29(6): 054101
[3] YAN Qin,LU Jian,NI Xiao-Wu**. Measurement of the Velocities of Nanoparticles in Flowing Nanofluids using the Zero-Crossing Laser Speckle Method[J]. Chin. Phys. Lett., 2012, 29(4): 054101
[4] MA Zhi, CAO Chen-Tao, LIU Qing-Fang, WANG Jian-Bo. A New Method to Calculate the Degree of Electromagnetic Impedance Matching in One-Layer Microwave Absorbers[J]. Chin. Phys. Lett., 2012, 29(3): 054101
[5] WANG Jia-Fu, QU Shao-Bo, XU Zhuo, MA Hua, WANG Cong-Min, XIA Song, WANG Xin-Hua, ZHOU Hang. Grating-Coupled Waveguide Cloaking[J]. Chin. Phys. Lett., 2012, 29(3): 054101
[6] LI Cheng-Guo, GAO Yong-Hao, XU Xing-Sheng. Angular Tolerance Enhancement in Guided-Mode Resonance Filters with a Photonic Crystal Slab[J]. Chin. Phys. Lett., 2012, 29(3): 054101
[7] KONG Qi, SHI Qing-Fan, YU Guang-Ze, ZHANG Mei. A New Method for Electromagnetic Time Reversal in a Complex Environment[J]. Chin. Phys. Lett., 2012, 29(2): 054101
[8] MA Jian-Yong, FAN Yong-Tao. Guided Mode Resonance Transmission Filters Working at the Intersection Region of the First and Second Leaky Modes[J]. Chin. Phys. Lett., 2012, 29(2): 054101
[9] XU He-Xiu**, WANG Guang-Ming, GONG Jian-Qiang. Compact Dual-Band Zeroth-Order Resonance Antenna[J]. Chin. Phys. Lett., 2012, 29(1): 054101
[10] ZHU Xue-Feng, ZOU Xin-Ye, ZHOU Xiao-Wei, LIANG Bin, CHENG Jian-Chun**. Concealing a Passive Sensing System with Single-Negative Layers[J]. Chin. Phys. Lett., 2012, 29(1): 054101
[11] SHI Fan, LI Wei, WANG Pi-Dong, LI Jun, WU Qiang, WANG Zhen-Hua, ZHANG Xin-Zheng**. Optically Controlled Coherent Backscattering from a Water Suspension of Positive Uniaxial Microcrystals[J]. Chin. Phys. Lett., 2012, 29(1): 054101
[12] GUO Yu-Bing, CHEN Yong-Hai**, XIANG Ying, QU Sheng-Chun, WANG Zhan-Guo . Photorefractive Effect of a Liquid Crystal Cell with a ZnO Nanorod Doped in Only One PVA Layer[J]. Chin. Phys. Lett., 2011, 28(9): 054101
[13] BAI Yi-Ming**, WANG Jun, CHEN Nuo-Fu, YAO Jian-Xi, ZHANG Xing-Wang, YIN Zhi-Gang, ZHANG Han, HUANG Tian-Mao . Dipolar and Quadrupolar Modes of SiO2/Au Nanoshell Enhanced Light Trapping in Thin Film Solar Cells[J]. Chin. Phys. Lett., 2011, 28(8): 054101
[14] ZHAO Yan-Zhong**, SUN Hua-Yan, ZHENG Yong-Hui . An Approximate Analytical Propagation Formula for Gaussian Beams through a Cat-Eye Optical Lens under Large Incidence Angle Condition[J]. Chin. Phys. Lett., 2011, 28(7): 054101
[15] Cumali Sabah . Refraction Characteristics of Cold Plasma Thin Film as a Left-Handed Metamaterial[J]. Chin. Phys. Lett., 2011, 28(6): 054101
Viewed
Full text


Abstract