Chin. Phys. Lett.  2010, Vol. 27 Issue (12): 129401    DOI: 10.1088/0256-307X/27/12/129401
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Chorus-Driven Outer Radiation Belt Electron Dynamics at Different L-Shells
ZHANG Sai1,2, XIAO Fu-Liang2**
1Hunan Science and Technology Industrial Vocational and Technical College, Xiangtan 411207
2School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410004
Cite this article:   
ZHANG Sai, XIAO Fu-Liang 2010 Chin. Phys. Lett. 27 129401
Download: PDF(514KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Energetic outer radiation belt electron phase space density (PSD) evolution due to interaction with whistler-mode chorus at different L−shells is investigated by solving the diffusion equation including cross diffusion terms. It is found that the difference of diffusion rates for different L−shells occurs primarily at pitch angles 0°–50° and around 90°. In particular, diffusion rates for L=6.5 are found to be 5–10 times larger than that for L=3.5 at these pitch angles. In the presence of cross terms, PSD for MeV electrons after 24 h decreases by about 25, 12, 10 and 8 times at L=3.5, 4.5, 5.5 and 6.5 near the loss cone, and increases by about 55, 45, 30 and 20 times at larger pitch angles, respectively. After 24 h, the ratios between MeV electron PSDs from simulations without and with cross diffusion at L=3.5, 4.5, 5.5 and 6.5 are about 350, 600, 800 and 800 near the loss cone, and become 5, 5.5, 6.5 and 8 at pitch angle 90°, respectively. These results demonstrate that neglect of cross diffusion generally results in the overestimate of PSD, and the cross diffusion plays a more significant role in the resonant interaction between chorus waves and outer radiation belt electrons at larger L.
Keywords: 94.20.wj      52.35.Hr      94.20.wc     
Received: 16 July 2010      Published: 23 November 2010
PACS:  94.20.wj (Wave/particle interactions)  
  52.35.Hr (Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))  
  94.20.wc (Plasma motion; plasma convection; particle acceleration)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/12/129401       OR      https://cpl.iphy.ac.cn/Y2010/V27/I12/129401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Sai
XIAO Fu-Liang
[1] Baker D N 2002 Science 297 1486
[2] Summers D, Thorne R M and Xiao F L 1998 J. Geophys. Res. 103 20487
[3] Li L, Cao J and Zhou G 2005 J. Geophys. Res. 110 A03203
[4] Xiao F L and He H Y 2006 Chin. Phys. Lett. 23 267
[5] Xiao F L, Thorne R M and Summers D 2007 Planet. Space Sci 55 1257
[6] Zheng H N, Su Z P and Xiong M 2008 Chin. Phys. Lett. 25 3515
[7] Zong Q G, Zhou X Z, Li X et al 2007 Geophys. Res. Lett. 34 L12105
[8] Zong Q G, Zhou X Z, Wang Y F et al 2009 J. Geophys. Res. 114 A10204
[9] Su Z P, Zheng H N and Wang S 2009 J. Geophys. Res. 114 A07201
[10] Summers D, Ni B and Meredith N P 2007 J. Geophys. Res. 112 A04206
[11] Varotsou A, Boscher D, Bourdarie S, Horne R B, Glauert S A and Meredith N P 2005 Geophys. Res. Lett. 32 L19106
[12] Horne R B, Thorne R M, Glauert S A, Albert J M, Meredith N P and Anderson R R 2005 J. Geophys. Res. 110 A03225
[13] Su Z P, Zheng H N 2008 Chin. Phys. Lett. 25 4493
[14] Li W, Shprits Y Y and Thorne R M 2007 J. Geophys. Res. 112 A10220
[15] Su Z P, Zheng H N and Wang S 2009 J. Geophys. Res. 114 A08202
[16] Shprits Y Y, Thorne R M, Horne R B and Summers D 2009 J. Geophys. Res. 114 A11205
[17] Xiao F L, Su Z P, Zheng H N and Wang S 2009 J. Geophys. Res. 114 A03201
[18] Fok M C, Horne R B, Meredith N P and Glauert S A 2008 J. Geophys. Res. 113 A03S08
[19] Albert J M 2007 J. Geophys. Res. 112 A12202
[20] Tao X, Chan A A, Albert J M and Miller J A 2008 J. Geophys. Res. 113 A07212
[21] Tao X, Albert J M and Chan A A 2008 J. Geophys. Res. 114 A02215
[22] Su Z P, Zheng H N and Xiong M 2009 Chin. Phys. Lett. 26 039401
[23] Xiao F L, Su Z P, Zheng H N and Wang S 2009 J. Geophys. Res. 115 A05216
[24] Glauert S A and Horne R B 2005 J. Geophys. Res. 110 4206
[25] Summers D 2005 J. Geophys. Res. 110 A08213
[26] Meredith N P, Horne R B, Thorne R M and Anderson R R 2003 Geophys. Res. Lett. 30 1871
[27] Albert J M 2003 J. Geophys. Res. 108 1249
[28] Summers D, Ni B and Meredith N P 2007 J. Geophys. Res. 112 A04207
[29] Albert J M and Young S L 2005 Geophys. Res. Lett. 32 14110
[30] Su Z P, Zheng H N and Wang S 2010 J. Geophys. Res. 115 A05219
[31] Su Z P, Zheng H N and Wang S 2010 J. Geophys. Res. 115 A06203
[32] Su Z P, Zheng H N 2009 Chin. Phys. Lett. 26 129401
[33] Su Z P, Xiao F L, Zheng H N and Wang S 2010 J. Geophys. Res. 115 A09208
[34] Reeves G D, K L McAdams, R H W Friedel and T P O' Brien 2003 Geophys. Res. Lett. 30 1529
Related articles from Frontiers Journals
[1] XIAO Fu-Liang, **, HE Zhao-Guo ZHANG Sai, SU Zhen-Peng, CHEN Liang-Xu, . Diffusion Simulation of Outer Radiation Belt Electron Dynamics Induced by Superluminous L-O Mode Waves[J]. Chin. Phys. Lett., 2011, 28(3): 129401
[2] GUO Jun, **, YU Bin, GUO Guang-Hai, ZHAO Bo . Electron Whistler Mode Waves Associated with Collisionless Magnetic Reconnection[J]. Chin. Phys. Lett., 2011, 28(2): 129401
[3] LIANG Hui-Min**, WANG Jing-Quan . Simulation of Interference Nanolithography of Second-Exciting Surface-Plasmon Polartions for Metal Nanograting Fabrication[J]. Chin. Phys. Lett., 2011, 28(1): 129401
[4] LIANG Hui-Min, WANG Jing-Quan, FAN Feng, QIN Ai-Li, ZHANG Chun-Yuan, CHENG Hui. Enhanced Surface-Plasmon-Polariton Interference for Nanolithography by a Micro-Cylinder-Lens Array[J]. Chin. Phys. Lett., 2010, 27(9): 129401
[5] ZHOU Qing-Hua, HE Yi-Hua, HE Zhao-Guo, YANG Chang. Propagation Characteristics of Whistler-Mode Chorus during Geomagnetic Activities[J]. Chin. Phys. Lett., 2010, 27(5): 129401
[6] WANG Jing-Quan, LIANG Hui-Min, SHI Sha, DU Jing-Lei. Theoretical Analysis of Interference Nanolithography of Surface Plasmon Polaritons without a Match Layer[J]. Chin. Phys. Lett., 2009, 26(8): 129401
[7] XIAO Fu-Liang, TIAN Tian, CHEN Liang-Xu. Bounce-averaged Pitch-angle Diffusion by Electromagnetic Ion Cyclotron Waves in Multi-ion Plasmas[J]. Chin. Phys. Lett., 2009, 26(5): 129401
[8] SU Zhen-Peng, ZHENG Hui-Nan, XIONG Ming. Dynamic Evolution of Outer Radiation Belt Electrons due to Whistler-Mode Chorus[J]. Chin. Phys. Lett., 2009, 26(3): 129401
[9] LAN Chao-Hui, HU Xi-Wei, LIU Ming-Hai. Numerical Study of Spontaneous Outspread of Large-Scale Surface-Wave Plasma Excited by Slot-Antenna Array[J]. Chin. Phys. Lett., 2009, 26(3): 129401
[10] ZHOU Qing-Hua, JIANG Bin, SHI Xiang-Hua, LI Jun-Qiu. Whistler-Mode Waves Growth by a Generalized Relativistic Kappa-Type Distribution[J]. Chin. Phys. Lett., 2009, 26(2): 129401
[11] SU Zhen-Peng, ZHENG Hui-Nan. Resonant Scattering of Relativistic Outer Zone Electrons by Plasmaspheric Plume Electromagnetic Ion Cyclotron Waves[J]. Chin. Phys. Lett., 2009, 26(12): 129401
[12] XIAO Fu-Liang, TIAN Tian, CHEN Liang-Xu, SU Zhen-Peng, ZHENG Hui-Nan. Evolution of Ring Current Protons Induced by Electromagnetic Ion Cyclotron Waves[J]. Chin. Phys. Lett., 2009, 26(11): 129401
[13] LAN Chao-Hui, HU Xi-Wei, JIANG Zhong-He, LIU Ming-Hai. Effect of Air Gap on Uniformity of Large-Scale Surface-Wave Plasma[J]. Chin. Phys. Lett., 2009, 26(11): 129401
[14] HE Hui-Yong, CHEN Liang-Xu, LI Jiang-Fan. Characteristics of Wave--Particle Interaction in a Hydrogen Plasma[J]. Chin. Phys. Lett., 2008, 25(9): 129401
[15] ZHENG Hui-Nan, SU Zhen-Peng, XIONG Ming. Pitch Angle Distribution Evolution of Energetic Electrons by Whistler-Mode Chorus[J]. Chin. Phys. Lett., 2008, 25(9): 129401
Viewed
Full text


Abstract