ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Quantum Phase Transition of the Bosonic Atoms near the Feshbach Resonance in an Optical Lattice |
LI Ben, CHEN Jing-Biao |
Institute of Quantum Electronics, and State Key Laboratory of Advanced Optical Communication System & Network, School of Electronics Engineering & Computer Science, Peking University, Beijing 100871
|
|
Cite this article: |
LI Ben, CHEN Jing-Biao 2010 Chin. Phys. Lett. 27 123701 |
|
|
Abstract The quantum phase transition from the Mott insulator to the superfluid phases of the bosonic atoms trapped in an optical lattice, in which the on-site interaction can be tuned by a Feshbach resonance, is investigated by a variational approach within mean-field theory. We derive an extended Bose–Hubbard model to describe this ultracold atomic system. By theoretical calculation and analysis, the phase diagram is shown clearly, and we find an exciting and novel phenomenon that is the appearance of the Mott insulator-sea (MI-sea). Meanwhile, the experimental feasibility of observing the MI-sea is discussed by analyzing the published data related to the Fashbach resonance at present. Finally, the potential application of the MI-sea for quantum information processing and quantum computation is also discussed in detail.
|
Keywords:
37.10.Jk
03.75.Lm
05.30.Jp
64.70.Tg
|
|
Received: 29 July 2010
Published: 23 November 2010
|
|
PACS: |
37.10.Jk
|
(Atoms in optical lattices)
|
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
05.30.Jp
|
(Boson systems)
|
|
64.70.Tg
|
(Quantum phase transitions)
|
|
|
|
|
[1] Hubbard J 1963 Proc. R. Soc. London A 276 238
[2] Esterling D M and Lange R V 1968 Rev. Mod. Phys. 40 796
[3] Fisher M P A et al 1989 Phys. Rev. B 40 546
[4] Oosten D V, Straten P V D and Stoof H T C 2001 Phys. Rev. A 63 053601
[5] Sengupta K and Dupuis N 2005 Phys. Rev. A 71 033629
[6] Greiner M et al 2002 Nature 415 39
[7] Campbell G K et al 2006 Science 313 649
[8] Gemelke N et al 2009 Nature 460 995
[9] Spielman I B, Phillips W D and Porto J V 2007 Phys. Rev. Lett. 98 080404
[10] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[11] Ralko A, Trousselet F and Poilblanc D 2010 Phys. Rev. Lett. 104 127203
[12] Jördens R et al 2008 Nature 455 204
[13] Schneider U et al 2008 Science 322 1520
[14] Pollet L, Troyer M, Houcke K V and Rombouts S M A 2006 Phys. Rev. Lett. 96 190402
[15] Gu S J, Cao J, Chen S and Lin H Q 2009 Phys. Rev. B 80 224508
[16] Mering A and Fleischhauer M 2008 Phys. Rev. A 77 023601
[17] Quach J et al 2009 Phys. Rev. A 80 063838
[18] Mering A et al 2009 Phys. Rev. A 80 053821
[19] Greentree A D, Tahan C, Cole J H and Hollenberg L C L 2006 Nature Physics 2 856
[20] Hartmann M J et al 2006 Nature Physics 2 849
[21] Hartmann M J et al 2008 Laser Photonics Rev. 2 527
[22] Buluta I and Nori F 2009 Science 326 108
[23] Köler T, Góal K and Julienne P S 2006 Rev. Mod. Phys. 78 1311
[24] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[25] Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1995 Phys. Rev. Lett. 81 3108
[26] Rousseau V B et al 2010 Phys. Rev. Lett. 104 167201
[27] Regal C A, Greiner M and Jin D S 2004 Phys. Rev. Lett. 92 040403
[28] Zwierlein M W, Stan C A, Schunck C H, Raupach S M F, Kerman A J and Ketterle W 2004 Phys. Rev. Lett. 92 120403
[29] Karpiuk T et al 2004 Phys. Rev. Lett. 93 100401
[30] Dannenberg O et al 2003 Phys. Rev. Lett. 91 210404
[31] Inouye S, Goldwin J, Olsen M L, Ticknor C, Bohn J L and Jin D S 2004 Phys. Rev. Lett. 93 183201
[32] Oktel M Ö et al 2007 Phys. Rev. B 75 045133
[33] Umucahlar R O et al 2007 Phys. Rev. A 76 055601
[34] Rokhsar D S and Kotliar B G 1991 Phys. Rev. B 44 10328
[35] Marte A et al 2002 Phys. Rev. Lett. 89 283202
[36] Jiang L et al 2007 Phys. Rev. A 76 062323
[37] Gorshkov A V, Rey A M, Daley A J, Boyd M M, Ye J, Zoller P and Lukin1 M D 2009 Phys. Rev. Lett. 102 110503
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|