ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Ab initio Study of He Stability in hcp-Ti |
DAI Yun-Ya1, YANG Li1**, PENG Shu-Ming2, LONG Xing-Gui2, GAO Fei3, ZU Xiao-Tao1
|
1Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054
2Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900
3Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352, USA
|
|
Cite this article: |
DAI Yun-Ya, YANG Li, PENG Shu-Ming et al 2010 Chin. Phys. Lett. 27 123102 |
|
|
Abstract The stability of He in hcp-Ti is studied using the ab initio method based on the density functional theory. The results indicate that a single He atom prefers to occupy the tetrahedral site rather than the octahedral site. The interaction of He defects with Ti atoms is employed to explain the relative stabilities of He point defects in hcp-Ti. The relative stability of He defects in hcp-Ti is useful for He clustering and bubble nucleation in metal tritides, which provides the basis for development of improved atomistic models.
|
Keywords:
31.15.Es
61.72.Jj
|
|
Received: 27 April 2010
Published: 23 November 2010
|
|
PACS: |
31.15.es
|
(Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))
|
|
61.72.jj
|
(Interstitials)
|
|
|
|
|
[1] Anton M, Detleffsen D, Schartner K H and Werner A 1993 J. Phys. B: At. Mol. Opt. Phys. 26 2005
[2] Yang L, Zu X T, Xiao H Y, Gao F, Heinisch H L, Kurtz R J and Liu K Z 2006 Appl. Phys. Lett. 88 091915
[3] Zhou H B, Liu Y L, Jin S, Zhang Y, Lu G H and Luo G N 2010 Nucl. Fusion 50 025016
[4] Liu Y L, Zhang Y, Zhou H B, Lu G H, Liu F and Luo G N 2009 Phys. Rev. B 79 172103
[5] Liu Y L, Zhou H B, Zhang Y, Jin S and Lu G H 2009 Nucl. Instrum. Methods Phys. Res. B 267 3193
[6] Zhou H B, Liu Y L, Zhang Y, Jin S and Lu G H 2009 Nuclear Instrum. Methods Phys. Res. Sect. B 267 3189
[7] Zhang Y, Feng W Q, Liu Y L, Lu G H and Wang T M 2009 Nuclear Instrum. Methods Phys. Res. Sect. B 267 3200
[8] Donnelly S E 1985 Radiat. Eff. 90 1
[9] Sun T Y, Long X G, Wang J and Hou Q 2008 Chin. Phys. Lett . 25 1784
[10] Wang J, Hou Q and Sun T Y 2006 Chin. Phys. Lett. 23 1666
[11] Wang J and Hou Q 2007 J. Appl. Phys. 102 093510
[12] Chen M, Hou Q, Wang J and Sun T Y 2008 Solid State Commun. 148 178
[13] SongY M, Luo S Z and Long X G 2008 Chin. Sci. Bull. 53 469
[14] Sun T Y, Long X G, Wu Z C, Yang B F and Peng S M 2009 J. Mater. Sci. Engin. 27 472
[15] Mo S D and Ching W Y 2000 Phys. Rev. B 62 7901
[16] Yang L, Peng S M, Long X G, Gao F, Heinisch H L, Kurtz R J and Zu X T 2010 J. Appl. Phys. 107 054903
[17] Zu X T, Yang L, Gao F, Peng S M, Heinisch H L, Long X G and Kurtz R J 2009 Phys. Rev. B 80 054104
[18] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[19] Blöchl P E 1994 Phys. Rev. B 50 17953
[20] Perdew J P, Chevary J A, Vosko S H and Fiolhais C 1992 Phys. Rev. B 46 6671
[21] Barrett C S and Massalski T B 1966 Structure of Metals (New York: McGraw-Hill)
[22] Simmons G and Wang H 1971 Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook 2nd edn (Cambridge: MIT Press)
[23] Yang L, Zu X T and Gao F 2008 Physica B 403 2719
[24] Seletskaia T, Osetsky Y, Stoller R E and Stocks G M 2005 Phys. Rev. Lett. 94 046403
[25] Seletskaia T, Osetsky Yuri, Stoller R E and Stocks G M 2008 Phys. Rev. B 78 134103
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|