GENERAL |
|
|
|
|
A New Scheme to Projective Synchronization of Fractional-Order Chaotic Systems |
WANG Jun-Wei1**, CHEN Ai-Min2,3
|
1School of Informatics, Guangdong University of Foreign Studies, Guangzhou 510006
2Institute of Applied Mathematics, Henan University, Kaifeng 475004
3School of Mathematics and Information Science, Henan University, Kaifeng 475004
|
|
Cite this article: |
WANG Jun-Wei, CHEN Ai-Min 2010 Chin. Phys. Lett. 27 110501 |
|
|
Abstract We demonstrate that the projective synchronization can be observed in coupled fractional-order chaotic systems. A new systematic and powerful coupling scheme is developed to investigate the projective synchronization via the open-plus-closed-loop control, which allows us to arbitrarily manipulate the scaling factor of projective synchronization. The proposed scheme is proved analytically on the basis of the stability theorem of the fractional differential equations. Numerical simulations on the fraction-order chaotic Chen system are presented to justify the theoretical analysis.
|
Keywords:
05.45.-a
05.45.Xt
05.45.Pq
|
|
Received: 13 October 2009
Published: 22 October 2010
|
|
PACS: |
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
05.45.Xt
|
(Synchronization; coupled oscillators)
|
|
05.45.Pq
|
(Numerical simulations of chaotic systems)
|
|
|
|
|
[1] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Pikovsky A, Rosenblum M and Kurths J 2001 Synchronization: A Universal Concept in Nonlinear Science (Cambridge: Cambridge University)
[3] Boccaletti S, Kurths J, Osipov G, Valladares D L and Zhou C S 2002 Phys. Rep. 366 1
[4] Mainieri R and Rehacek J 1999 Phys. Rev. Lett. 82 3042
[5] Li C G, Liao X X and Yu J B 2003 Phys. Rev. E 68 067203
[6] Zhou T S and Li C P 2005 Physica D 212 111
[7] Deng W H and Li C P 2005 J. Phys. Soc. Jpn. 74 1645
[8] Li C P and Deng W H 2006 Int. J. Mod. Phys. B 20 791
[9] Li C P, Deng W H and Xu D 2006 Physica A 360 171
[10] Wang J W and Zhang Y B 2006 Chaos, Solitons Fractals 30 1265
[11] Wang J W, Xiong X H and Zhang Y B 2006 Physica A 370 279
[12] Lu J G 2006 Chaos, Solitons Fractals 27 519
[13] Wang X Y and He Y J 2008 Phys. Lett. A 372 435
[14] Li C P, Deng W H and Chen G R 2006 Fractals 14 303
[15] Peng G J and Jiang Y L 2008 Phys. Lett. A 372 3963
[16] Samko S G, Kilbas A A and Marichev O I 1993 Fractional Integrals and Derivatives Theory and Applications (New York: Gordon and Breach)
[17] Butzer P L and Westphal U 2000 An Introduction to Fractional Calculus (Singapore: World Scientific)
[18] Podlubny I 1999 Fractional Differential Equations (New York: Academic)
[19] Jackson E A and Grosu I 1995 Physica D 85 1
[20] Grosu I 1997 Phys. Rev. E 56 3709
[21] Grosu I, Padmanaban E, Roy P K and Dana S K 2008 Phys. Rev. Lett. 100 234102
[22] Matignon D 1966 Computational Engineering in Systems and Application Multi-Conference (IMACS, IEEE-SMC Proceedings, Lille, France, July 1996) vol 2 pp 963-968
[23] Chen G R and Ueta T 1999 Int. J. Bifurcation Chaos Appl. Sci. Eng. 9 1465
[24] Diethelm K, Ford N J and Freed A D 2002 Nonlinear Dyn. 29 3
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|