Chin. Phys. Lett.  2010, Vol. 27 Issue (11): 110304    DOI: 10.1088/0256-307X/27/11/110304
GENERAL |
Bound and Resonant States of the Hulthén Potential Investigated by Using the Complex Scaling Method with the Oscillator Basis
FENG Jun-Sheng1**, LIU Zheng2, GUO Jian-You3
1Department of Physics and Electronic Engineering, Hefei Normal University, Hefei 230061
2State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
3School of Physics and Materials Science, Anhui University, Hefei 230039
Cite this article:   
FENG Jun-Sheng, LIU Zheng, GUO Jian-You 2010 Chin. Phys. Lett. 27 110304
Download: PDF(476KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Bound and resonant states of the Hulthén potential are studied. The complex scaling method is used to achieve the energy spectrum. The oscillator basis is used to expand the radial wave function. Conforming to the standard feature of the complex scaling method, the bound energies do not change and the continuums change with the rotational angle. With tables and graphs, the interesting properties of the energy spectrum for various physical parameters are presented. The Gauss quadrature integral approximation is used to deal with the potential integral term.
Keywords: 03.65.Pm      02.60.Lj      25.70.Ef     
Received: 10 August 2010      Published: 22 October 2010
PACS:  03.65.Pm (Relativistic wave equations)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  25.70.Ef (Resonances)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/11/110304       OR      https://cpl.iphy.ac.cn/Y2010/V27/I11/110304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FENG Jun-Sheng
LIU Zheng
GUO Jian-You
[1] Hulthén L 1942 Ark Mat. Astron. Fys. A 28 5
[2] Tang A A and Chan F T 1987 Phys. Rev. A 35 911
[3] Varshni Y P 1990 Phys. Rev. A 41 4682
[4] Cai J M, Cai P Y and Inomata A 1986 Phys. Rev. A 34 4621
[5] Dunlap B I and Armstrong Jr L 1972 Phys. Rev. A 6 1370
[6] Roy B and Roychoudhury R 1987 J. Phys. A: Math. Gen. 20 3051
[7] Ikhdair S M and Ranazan S 2007 J. Math. Chem. 42 461
[8] Bayrak O, Kocak G and Boztosun I 2006 J. Phys. A: Math. Gen. 39 11521
[9] Alhaidari A D 2004 J. Phys. A: Math. Gen. 37 5805
[10] Calvin S 1993 Phys. Rev. A 48 220
[11] Abdelmonem M S, Nasser I, Bahlouli H, Khawaja U A and Alhaidari A D 2009 Phys. Lett. A 373 2408
[12] Andric L, Baccarelli I, Grozdanov T P and McCarroll R 2002 Phys. Lett. A 298 41
[13] Zhao F and Zhao M S 2007 Phys. Lett. A 365 376
[14] Moiseyev N 1998 Phys. Rep. 302 211
[15] Nasser I, Abdemonem M S, Bahlouli H and Alhaidari A D 2007 J. Phys. B: At. Mol. Opt. Phys. 40 4245
[16] Aguilar J and Combes J M 1971 Commun. Math. Phys. 22 269
[17] Balslev E and Combes J M 1971 Commun. Math. Phys. 22 280
[18] Appendix A in Alhaidari A D, Yamani H A and Abdelmonem M S 2001 Phys. Rev. A 63 62708
[19] Guo J Y, Yu M, Wang J, Yao B M and Jiao P 2009 Comput. Phys. Commun. 181 550
Related articles from Frontiers Journals
[1] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 110304
[2] HUANG Zeng-Guang**, FANG Wei, , LU Hui-Qing, . Inflation and Singularity of a Bianchi Type-VII0 Universe with a Dirac Field in the Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(8): 110304
[3] SI Xin-Hui**, ZHENG Lian-Cun, ZHANG Xin-Xin, SI Xin-Yi, YANG Jian-Hong . Flow of a Viscoelastic Fluid through a Porous Channel with Expanding or Contracting Walls[J]. Chin. Phys. Lett., 2011, 28(4): 110304
[4] Junaid Ali Khan*, Muhammad Asif Zahoor Raja**, Ijaz Mansoor Qureshi . Stochastic Computational Approach for Complex Nonlinear Ordinary Differential Equations[J]. Chin. Phys. Lett., 2011, 28(2): 110304
[5] HUANG Zeng-Guang**, FANG Wei, LU Hui-Qing, ** . Inflation and Singularity in Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(2): 110304
[6] Junaid Ali Khan**, Muhammad Asif Zahoor Raja**, Ijaz Mansoor Qureshi . Novel Approach for a van der Pol Oscillator in the Continuous Time Domain[J]. Chin. Phys. Lett., 2011, 28(11): 110304
[7] Marina-Aura Dariescu**, Ciprian Dariescu, Ovidiu Buhucianu . Charged Scalars in Transient Stellar Electromagnetic Fields[J]. Chin. Phys. Lett., 2011, 28(1): 110304
[8] PAN Qi-Yuan, JING Ji-Liang. Late-Time Evolution of the Phantom Scalar Perturbation in the Background of a Spherically Symmetric Static Black Hole[J]. Chin. Phys. Lett., 2010, 27(6): 110304
[9] ZHANG Zhan-Long, DENG Jun, XIAO Dong-Ping, HE Wei, TANG Ju. An Adaptive Fast Multipole Higher Order Boundary Element Method for Power Frequency Electric Field of Substation[J]. Chin. Phys. Lett., 2010, 27(3): 110304
[10] MO Jia-Qi. A Variational Iteration Solving Method for a Class of Generalized Boussinesq Equations[J]. Chin. Phys. Lett., 2009, 26(6): 110304
[11] S. H. Kim. Identification of the Amplification Mechanism in the First Free-Electron Laser as Net Stimulated Free-Electron Two-Quantum Stark Emission[J]. Chin. Phys. Lett., 2009, 26(5): 110304
[12] DING Qi, ZHANG Hong-Qing. Analytic Solution for Magnetohydrodynamic Stagnation Point Flow towards a Stretching Sheet[J]. Chin. Phys. Lett., 2009, 26(10): 110304
[13] S. H. Kim. Electric-Wiggler-Enhanced Three-Quantum Scattering and the Output Power Affected by this Scattering in a Free-Electron Laser[J]. Chin. Phys. Lett., 2009, 26(1): 110304
[14] MO Jia-Qi. Approximate Solution of Homotopic Mapping to Solitary Wave for Generalized Nonlinear KdV System[J]. Chin. Phys. Lett., 2009, 26(1): 110304
[15] GANG Tie-Qiang, MEI Feng-Xiang, CHEN Li-Jie. Structure-Preserving Algorithms for the Lorenz System[J]. Chin. Phys. Lett., 2008, 25(3): 110304
Viewed
Full text


Abstract