GENERAL |
|
|
|
|
A Simple Method for Generating Discrete Multi-Component Integrable Hierarchy |
YAO Yu-Qin1**, ZENG Yun-Bo2
|
1Department of Applied Mathematics, China Agricultural University, Beijing 100083
2Department of Mathematical Science, Tsinghua University, Beijing 100084
|
|
Cite this article: |
YAO Yu-Qin, ZENG Yun-Bo 2010 Chin. Phys. Lett. 27 110201 |
|
|
Abstract For M×N spectral matrix, a kind of operation ʘ which satisfies combination law (aʘb)ʘc=aʘ(bʘc) is introduced. The discrete multi−component zero-curvature equation is deduced by using the new operation ʘ, and a simple method for constructing discrete multi-component integrable hierarchy is proposed. As its application, the multi-component Toda hierarchy and its two kinds of integrable couplings are worked out.
|
Keywords:
02.03.Ik
|
|
Received: 21 June 2010
Published: 22 October 2010
|
|
|
|
|
|
[1] Fokas A S 1987 Stud. Appl. Math. 77 253
[2] Hu X B and Zhu Z N 1998 J. Math. Phys. 39 4766
[3] Zhu Z N 2006 J. Phys. A 39 5727
[4] Ma W X and Fuchssteiner B 1999 J. Math. Phys. 40 2400
[5] Zhang D J and Chen D Y 2002 J. Phys. A 35 7225
[6] Ji J et al 2007 Commun. Theor. Phys. 47 769
[7] Ma W X 2000 Methods and Application of Analysis 7 21
[8] Tu G Z 1990 J. Math. Phys. 23 3903
[9] Ablowitz M J and Ladik J F 1975 J. Math. Phys. 16 598
[10] Kac M and Moerbeke P V 1975 Adv. Math. 16 160
[11] Yao Y Q et al 2007 Chin. Phys. Lett. 24 308
[12] Tsuchida T and Wadati M 1999 Phys. Lett. A 257 53
[13] Tsuchida T et al 1999 J. Phys. Soc. Jpn. 68 2241
[14] Ma W X and Zhou R G 2002 Chin. Ann. Math. 23B 373
[15] Guo F K and Zhang Y F 2003 J. Math. Phys. 44 5793
[16] Zhang Y F 2005 Phys. Lett. A 342 82
Zhang Y F 2005 Phys. Lett. A 327 438
[17] Zhang Y F 2004 Chaos Soliton and Fractals 21 305
[18] Yao Y Q et al 2007 Appl. Math. Lett. 20 1039
[19] Xia T C et al 2005 Chaos Soliton and Fractals 26 605
[20] You F C and Xia T C 2008 Appl. Math. Comput. 201 44
[21] Xia T C et al 2005 Commut. Theor. Phys. 44 990
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|