Chin. Phys. Lett.  2010, Vol. 27 Issue (10): 107302    DOI: 10.1088/0256-307X/27/10/107302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Enhanced Performance of Phase Change Memory Cell Element by Initial Operation and Non-Cumulative Programming
CHEN Yi-Feng, SONG Zhi-Tang, CHEN Xiao-Gang, LIU Bo, XU Cheng, FENG Gao-Ming, WANG Liang-Yong, ZHONG Min, FENG Song-Lin
State Key Laboratory of Functional Materials for Informatics, Laboratory of Nanotechnology, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences Shanghai 200050
Cite this article:   
CHEN Yi-Feng, SONG Zhi-Tang, CHEN Xiao-Gang et al  2010 Chin. Phys. Lett. 27 107302
Download: PDF(713KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A phase change memory (PCM) device, based on the Ge2Sb2Te5 (GST) material, is fabricated using the standard 0.18−μm CMOS technology. After serials of detailed experiments on the phase transition behaviors, we find that the RESET process is strongly dependent on the state of the inactive area and the active area affects the SET process dramatically. By applying a 5−mA current-voltage (I-V) sweep as initial operation, we can reduce the voltage drop beyond the active area during the RESET process and the overall RESET voltage decreases from 3 V plus to 2.5 V. For the SET operation, a non−cumulative programming method is introduced to eliminate the impact of randomly formed amorphous active area, which is strongly related to the threshold switching process and SET voltage. Combining the two methods, the endurance performance of the PCM device has been remarkably improved beyond 1×106 cycles.
Keywords: 73.61.Jc      61.72.Uj      87.15.Zg      85.30.Tv     
Received: 12 April 2010      Published: 26 September 2010
PACS:  73.61.Jc (Amorphous semiconductors; glasses)  
  61.72.uj (III-V and II-VI semiconductors)  
  87.15.Zg (Phase transitions)  
  85.30.Tv (Field effect devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/10/107302       OR      https://cpl.iphy.ac.cn/Y2010/V27/I10/107302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Yi-Feng
SONG Zhi-Tang
CHEN Xiao-Gang
LIU Bo
XU Cheng
FENG Gao-Ming
WANG Liang-Yong
ZHONG Min
FENG Song-Lin
[1] Ovshinsky S R 1968 Phys. Rev. Lett. 21 1450
[2] Feinleib J et al 1971 Appl. Phys. Lett. 186 254
[3] Zhong M et al 2008 Chin. Phys. Lett. 25 762
[4] Lai S and Lowrey T 2001 IEDM Tech. Dig. 36.5.1
[5] Feng G M et al 2008 Chin. Phys. Lett. 25 2289
[6] Horii H et al 2003 Symp. VLSI Technology Digest of Technical Papers 177
[7] Liu B et al 2007 Chin. Phys. Lett. 24 262
[8] Xu C et al 2008 Appl. Phys. Lett. 92 062103
[9] Liu B et al 2005 Thin Solid Films 478 49
[10] Zhang T et al 2004 Chin. Phys. Lett. 21 741
[11] Mendoza-Galván A and González-Hernández J 2000 J. Appl. Phys. 87 760
Related articles from Frontiers Journals
[1] HUANG Xiao-Ming, WU Chen-Fei, LU Hai, XU Qing-Yu, ZHANG Rong, ZHENG You-Dou. Impact of Interfacial Trap Density of States on the Stability of Amorphous InGaZnO-Based Thin-Film Transistors[J]. Chin. Phys. Lett., 2012, 29(6): 107302
[2] CHANG Jian-Guang,WU Chun-Bo,JI Xiao-Li**,MA Hao-Wen,YAN Feng,SHI Yi,ZHANG Rong. The Leakage Current Improvement of a Ni-Silicided SiGe/Si Junction Using a Si Cap Layer and the PAI Technique[J]. Chin. Phys. Lett., 2012, 29(5): 107302
[3] XUE Bai-Qing,CHANG Hu-Dong,SUN Bing,WANG Sheng-Kai,LIU Hong-Gang**. The Impact of HCl Precleaning and Sulfur Passivation on the Al2O3/Ge Interface in Ge Metal-Oxide-Semiconductor Capacitors[J]. Chin. Phys. Lett., 2012, 29(4): 107302
[4] LU Li,CHANG Hu-Dong,SUN Bing,WANG Hong,XUE Bai-Qing,ZHAO Wei,LIU Hong-Gang**. Solid Phase Reactions of Ni-GaAs Alloys for High Mobility III–V MOSFET Applications[J]. Chin. Phys. Lett., 2012, 29(4): 107302
[5] ZHANG Guo-An, ZHANG Dong-Wei, HE Jin, SU Yan-Mei, WANG Cheng, CHEN Qin, LIANG Hai-Lang, YE Yun. A Single-Transistor Active Pixel CMOS Image Sensor Architecture[J]. Chin. Phys. Lett., 2012, 29(3): 107302
[6] WAN Qi-Jian, FENG Jie, GUO Gang. Crystallization Characteristics of SiNx-Doped SbTe Films for Phase Change Memory[J]. Chin. Phys. Lett., 2012, 29(3): 107302
[7] XU Xiao-Yan, MA Xiang-Yang, JIN Lu, YANG De-Ren. Effect of Rapid Thermal Annealing Ambient on Photoluminescence of ZnO Films[J]. Chin. Phys. Lett., 2012, 29(3): 107302
[8] GAO Xi-Li, ZHANG Xiao-Zhong, WAN Cai-Hua, WANG Ji-Min. Voltage-Induced Effect on Resistance of C:N/Si Heterojunctions[J]. Chin. Phys. Lett., 2012, 29(2): 107302
[9] BI Zhi-Wei, HAO Yue, FENG Qian, GAO Zhi-Yuan, ZHANG Jin-Cheng, MAO Wei, ZHANG Kai, MA Xiao-Hua, LIU Hong-Xia, YANG Lin-An, MEI Nan, CHANG Yong-Ming. AlGaN/GaN Metal-Insulator-Semiconductor High Electron-Mobility Transistor Using a NbAlO/Al2O3 Laminated Dielectric by Atomic Layer Deposition[J]. Chin. Phys. Lett., 2012, 29(2): 107302
[10] LI Shao-Juan, HE Xin, HAN De-Dong, SUN Lei, WANG Yi, HAN Ru-Qi, CHAN Man-Sun, ZHANG Sheng-Dong, **. Reactive Radiofrequency Sputtering-Deposited Nanocrystalline ZnO Thin-Film Transistors[J]. Chin. Phys. Lett., 2012, 29(1): 107302
[11] LIU Sheng-Hou, CAI Yong**, GONG Ru-Min, WANG Jin-Yan, ZENG Chun-Hong, SHI Wen-Hua, FENG Zhi-Hong, WANG Jing-Jing, YIN Jia-Yun, Cheng P. Wen, QIN Hua, ZHANG Bao-Shun . Enhancement-Mode AlGaN/GaN High Electron Mobility Transistors Using a Nano-Channel Array Structure[J]. Chin. Phys. Lett., 2011, 28(7): 107302
[12] Kuang-Po HSUEH**, Shih-Tzung SU, Jun ZENG . Numerical Simulation of 4H-SiC Metal Semiconductor Field Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 107302
[13] Seoung-Hwan Park**, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, Doyeol Ahn . Optical Gain Analysis of Graded InGaN/GaN Quantum-Well Lasers[J]. Chin. Phys. Lett., 2011, 28(7): 107302
[14] PAN Feng, QIAN Xian-Rui, HUANG Li-Zhen, WANG Hai-Bo, YAN Dong-Hang** . Significant Improvement of Organic Thin-Film Transistor Mobility Utilizing an Organic Heterojunction Buffer Layer[J]. Chin. Phys. Lett., 2011, 28(7): 107302
[15] SUN Tao, WANG Ming-Qing, SUN Yong-Jian, WANG Bo-Ping, ZHANG Guo-Yi, TONG Yu-Zhen, DUAN Hui-Ling** . Deflection Reduction of GaN Wafer Bowing by Coating or Cutting Grooves in the Substrates[J]. Chin. Phys. Lett., 2011, 28(4): 107302
Viewed
Full text


Abstract