Chin. Phys. Lett.  2010, Vol. 27 Issue (10): 104702    DOI: 10.1088/0256-307X/27/10/104702
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Singular Wave Solutions of Two Integrable Generalized KdV Equations
ZHANG Zheng-Di, BI Qin-Sheng
Faculty of Science, Jiangsu University, Zhenjiang 212013
Cite this article:   
ZHANG Zheng-Di, BI Qin-Sheng 2010 Chin. Phys. Lett. 27 104702
Download: PDF(935KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present some singular wave solutions such as multi-peaked periodic waves, multi-peaked kink waves, multi-peaked peakons as well as kink-compactons, associated with singular curves of generalized KdV equation and modified KdV equation. When a trajectory intersects with the singular curve, it may be divided into segments. Different combinations of these segments may lead to different singular wave solutions, while at the intersection points, peaks on the waves can be observed.
Keywords: 47.35.+i      05.45.Yv      11.10.Ef      11.10.Lm     
Received: 25 March 2010      Published: 26 September 2010
PACS:  47.35.+i  
  05.45.Yv (Solitons)  
  11.10.Ef (Lagrangian and Hamiltonian approach)  
  11.10.Lm (Nonlinear or nonlocal theories and models)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/10/104702       OR      https://cpl.iphy.ac.cn/Y2010/V27/I10/104702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Zheng-Di
BI Qin-Sheng
[1] Whitham G B 1974 Linear and Nonlinear Waves (New York: Wiley Interscience)
[2] Johnson R S 1979 Phys. Lett. A 72 197
[3] Gel'fand I M and Dorfman I 1979 Funct. Anal. Appl. 13 248
[4] Fokas A S and Fuchssteiner B 1980 Lett. Nuovo Cimento 28 299
[5] Fokas A S 1995 Physica D 87 145
[6] Dai H H 1998 Wave Motion 28 367
[7] Bi Q S 2005 Phys. Lett. A 344 361
[8] Dullin H R, Gottwald G A and Holm D D 2001 Phys. Rev. Lett. 87 1772
[9] Li J and Zhang J 2004 Chaos, Solitons and Fractals 21 899
[10] Dai H H and Huo Y 2000 Proc. Roy. Soc. London A 456 331
[11] Bi Q S and Zhang Z D 2008 Phys Rev. E 77 036607
[12] Camassa R and Holm D D 1993 Phys. Rev. Lett. 71 1661
[13] Zhang Z D and Bi Q S 2008 Phys. Lett. A 372 3243
[14] Zhang Z D and Bi Q S 2009 Chin. Phys. Lett. 26 010503
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 104702
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 104702
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 104702
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 104702
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 104702
[6] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 104702
[7] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 104702
[8] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 104702
[9] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 104702
[10] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 104702
[11] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 104702
[12] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 104702
[13] ZHANG Zhi-Qiang, WANG Deng-Long**, LUO Xiao-Qing, HE Zhang-Ming, DING Jian-Wen . Controlling of Fusion of Two Solitons in a Two-Component Condensate by an Anharmonic External Potential[J]. Chin. Phys. Lett., 2011, 28(5): 104702
[14] WU Jian-Ping** . A New Wronskian Condition for a (3+1)-Dimensional Nonlinear Evolution Equation[J]. Chin. Phys. Lett., 2011, 28(5): 104702
[15] CHEN Xiang-Wei, MEI Feng-Xiang** . Jacobi Last Multiplier Method for Equations of Motion of Constrained Mechanical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 104702
Viewed
Full text


Abstract