Chin. Phys. Lett.  2010, Vol. 27 Issue (1): 010501    DOI: 10.1088/0256-307X/27/1/010501
GENERAL |
Deterministic Characterization of Intrinsic Noise in Chemical Reactions
YAN Long1, WANG Hong-Li1,2,3, OUYANG Qi1,2,3
1State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 1008712Center for Theoretical Biology, Peking University, Beijing 1008713The Beijing-Hong Kong-Singapore Joint Center for Nonlinear and Complex Systems (PKU), Beijing 100871
Cite this article:   
YAN Long, WANG Hong-Li, OUYANG Qi 2010 Chin. Phys. Lett. 27 010501
Download: PDF(374KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The association between intrinsic noises and deterministic descriptions/properties of the rate equations for chemical reactions is analyzed using the linear noise approximation of the master equation. We illustrate that the effect of intrinsic noise is determined in combination by three components: the system size, the matrix associated with reaction kinetics, and the eigenvalues associated with the system's dissipation. Generally, a more attractive dynamics tends to attenuate the internal fluctuations more significantly because intrinsic noises are inversely proportional to the absolute value of the real part of the eigenvalues. In addition, a higher reaction rate and larger stoichiometry coefficients will give rise to stronger intrinsic noise.
Keywords: 05.45.Jn      82.40.Ck      05.40.-a     
Received: 28 August 2009      Published: 30 December 2009
PACS:  05.45.Jn (High-dimensional chaos)  
  82.40.Ck (Pattern formation in reactions with diffusion, flow and heat transfer)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/1/010501       OR      https://cpl.iphy.ac.cn/Y2010/V27/I1/010501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAN Long
WANG Hong-Li
OUYANG Qi

[1] Raser J M and O'Shea E K 2005 Science 3092010
[2] Thattai M and Oudenaarden A V 2001 Proc. Natl. Acad.Sci. USA 98 8614
[3] Shibata T and Fujimoto K 2005 Proc. Natl. Acad. Sci.USA 102 331
[4] Batada N N and Hurst L D 2007 Nat. Genet. 39945
[5] Kaneko K 2007 Plos. One 5 e434
[6] Kampen N G Van 2007 Stochastic Processes in Physicsand Chemistry 3rd edn (Amsterdam: North-Holland)
[7] Scott M, Ingalls B and K{\aern M 2006 Chaos 16 026107
[8] Elf J, Paulsson J, Berg O G and Ehrenberg M 2003 Biophys. J. 84 154
[9] Gillespie D T 1977 J. Phys. Chem. 81 2340
[10] Ali F and Menzinger M 1999 Chaos 9 348
Related articles from Frontiers Journals
[1] BAI Zhan-Wu. Role of the Bath Spectrum in the Specific Heat Anomalies of a Damped Oscillator[J]. Chin. Phys. Lett., 2012, 29(6): 010501
[2] SHU Chang-Zheng,NIE Lin-Ru**,ZHOU Zhong-Rao. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise[J]. Chin. Phys. Lett., 2012, 29(5): 010501
[3] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 010501
[4] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 010501
[5] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 010501
[6] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 010501
[7] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 010501
[8] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 010501
[9] ZHANG Lu, ZHONG Su-Chuan, PENG Hao, LUO Mao-Kang** . Stochastic Multi-Resonance in a Linear System Driven by Multiplicative Polynomial Dichotomous Noise[J]. Chin. Phys. Lett., 2011, 28(9): 010501
[10] LI Chun, MEI Dong-Cheng, ** . Effects of Time Delay on Stability of an Unstable State in a Bistable System with Correlated Noises[J]. Chin. Phys. Lett., 2011, 28(4): 010501
[11] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 010501
[12] WANG Shao-Hua, YANG Ming**, WU Da-Jin . Diffusion of Active Particles Subject both to Additive and Multiplicative Noises[J]. Chin. Phys. Lett., 2011, 28(2): 010501
[13] LI Guang-Zhao, CHEN Yong-Qi, TANG Guo-Ning**, LIU Jun-Xian . Spiral Wave Dynamics in a Response System Subjected to a Spiral Wave Forcing[J]. Chin. Phys. Lett., 2011, 28(2): 010501
[14] FENG Cun-Fang**, WANG Ying-Hai . Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach[J]. Chin. Phys. Lett., 2011, 28(12): 010501
[15] HE Zheng-You, ZHOU Yu-Rong** . Vibrational and Stochastic Resonance in the FitzHugh–Nagumo Neural Model with Multiplicative and Additive Noise[J]. Chin. Phys. Lett., 2011, 28(11): 010501
Viewed
Full text


Abstract