GENERAL |
|
|
|
|
Phase-Dependent Effects in Stern-Gerlach Experiments |
XU Xu, ZHOU Xiao-Ji |
School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 |
|
Cite this article: |
XU Xu, ZHOU Xiao-Ji 2010 Chin. Phys. Lett. 27 010309 |
|
|
Abstract In the frame of quantum mechanics, we consider an ensemble of spin-1/2 neutral particles passing through a Stern-Gerlach apparatus and explore how their motions depend on the initial phase difference between two internal spin states. Assuming the particles moving along y-axis, due to the initial phase difference between spin states, they not only split along the longitudinal direction (z-axis) but also separate along the lateral direction (x-axis). The dependence of the lateral displacement on the initial phase difference reminds one of the picture of a quantum interference. This generalized interference provides an alternative approach to measuring the initial phase difference. The experimental realization with ultracold atoms or Bose-Einstein condensates is also discussed.
|
Keywords:
03.65.Sq
03.65.Ta
03.65.Bz
|
|
Received: 27 September 2009
Published: 30 December 2009
|
|
PACS: |
03.65.Sq
|
(Semiclassical theories and applications)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
03.65.Bz
|
|
|
|
|
|
[1] Eisberg R and Resnick R 1974 Quantum Physics (NewYork, Wiley) [2] Park C Y et al 2002 Phys. Rev. A 65 033410 [3] Guo Y et al 2008 Phys. Rev. A 78 013833 [4] Banerjee S and Ghosh R 2000 Phys. Rev. A 62042105 [5] Imambekov A et al 2004 Phys. Rev. Lett. 93120405 [6] Fran\c{ca H M et al 1992 Phys. Rev. A 46 2265 [7] Menda\v{s I P 2005 Phys. Rev. A 71 034103 [8] Lembessis V E 2008 Phys. Rev. A 78 043423 [9] Mizushima T et al 2005 Phys. Rev. Lett. 94060404 [10] Karpa L and Weitz M 2006 Nature Phys. 2 332 [11] Ziman M and Heinosaari T 2008 Phys. Rev. A 77042321 [12] Lin Q et al 2007 Chin. Phys. Lett. 24 1809 [13] Yand C et al 2007 Chin. Phys. Lett. 24 3048 [14] Cruz-Barrios S and G\'omes-Camacho J 2000 Phys.Rev. A 63 012101 [15] Potel G et al 2005 Phys. Rev. A 71 052106 [16] Lee C et al 2004 Phys. Rev. A 69 033611 [17] Bao W et al 2003 J. Comput. Phys. 187 318 [18] Yang F et al 2008 Phys. Rev. A 78 043611 [19] Wheeler M H et al 2004 Phys. Rev. Lett. 93170402 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|