Chin. Phys. Lett.  2009, Vol. 26 Issue (9): 098701    DOI: 10.1088/0256-307X/26/9/098701
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Kinetic Model of the Lysogeny/Lysis Switch of Phage λ
DING Hui, LUO Liao-Fu
Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021
Cite this article:   
DING Hui, LUO Liao-Fu 2009 Chin. Phys. Lett. 26 098701
Download: PDF(278KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A kinetic model of the interactions between operators and regulators is developed to study the stabilities of genetic states and lysogeny/lysis switch in Escherichia coli infected by bacteriophage lambda. Using adiabatic approximation, the kinetic evolutions of mRNA and regulator concentrations can be deduced from operators' equations. Furthermore, the stability of each state of the system is studied. The results show that the lysogenic state switches to the lytic state through two bifurcations: one from a single stable state to a three-point state, and the other from a three-point state to a single stable state. Then we indicate that the property of the lysogeny/lysis switch satisfies the topological characteristics theorem. Finally, the influence of the left operators on the lysogeny/lysis switch is briefly discussed. The results show that the cooperativity of the CI2 bound to left and right operators makes the lysogenic state more stable.
Keywords: 87.15.Ad      02.30.Oz     
Received: 25 September 2008      Published: 28 August 2009
PACS:  87.15.ad (Analytical theories)  
  02.30.Oz (Bifurcation theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/9/098701       OR      https://cpl.iphy.ac.cn/Y2009/V26/I9/098701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DING Hui
LUO Liao-Fu
[1] Bakk A, Metzler R and Sneppen K 2004 Biophys. J. 86 58
[2] Santillan M and Mackey M C 2004 Biophys. J. 86 75
[3] Shea M A and Ackers G K 1985 J. Mol. Biol. 181 211
[4] Koblan K S and Ackers G K 1992 Biochemistry 31 57
[5] Kuttler C and Niehren J 2006 Transactions onComputational Systems Biology 4230 24
[6] Ackers G K et al 1982 Proc. Natl. Acad. Sci. USA 79 1129
[7] Haken H 1983 Advanced Synergetics (Berlin:Springer) p 188
[8] Clark R N 1992 IEEE Control System Magazine 12 119
[9] Murray J D 1989 Mathematical Biology (New York:Springer) p 234
[10] Glass L 1975 Proc. Natl. Acad. Sci. USA 722856
[11] Landau L D and Lifshitz E M 1958 Statisticalphysics (London: Pergamon) p 218
[12] Arkin A et al 1998 Genetics 149 1633
[13] Dodd I B et al 2001 Genes Dev. 15 3013
Related articles from Frontiers Journals
[1] WU Jie,ZHAN Xi-Sheng**,ZHANG Xian-He,GAO Hong-Liang. Stability and Hopf Bifurcation Analysis on a Numerical Discretization of the Distributed Delay Equation[J]. Chin. Phys. Lett., 2012, 29(5): 098701
[2] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 098701
[3] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 098701
[4] YOOER Chi-Feng, **, WEI Fang, XU Jian-Xue, ZHANG Xin-Hua . Exotic Homoclinic Surface of a Saddle-Node Limit Cycle in a Leech Neuron Model[J]. Chin. Phys. Lett., 2011, 28(3): 098701
[5] WU Ke-Fei, WAN Rong-Zheng, WANG Chun-Lei, REN Xiu-Ping, FANG Hai-Ping,. A Quasi-One-Dimensional Model for a Chain of Water Molecules on the Nanometer Scale[J]. Chin. Phys. Lett., 2010, 27(3): 098701
[6] YOOER Chi-Feng, XU Jian-Xue, ZHANG Xin-Hua. Bifurcation of a Saddle-Node Limit Cycle with Homoclinic Orbits Satisfying the Small Lobe Condition in a Leech Neuron Model[J]. Chin. Phys. Lett., 2009, 26(8): 098701
[7] ZHANG Ling-Yun, WANG Peng-Ye. Electric Field-Induced Fluid Velocity Field Distribution in DNA Solution[J]. Chin. Phys. Lett., 2008, 25(10): 098701
[8] LIN Wen-Hui, ZHAO Ya-Pu. Dynamics Behaviour of Nanoscale Electrostatic Actuators [J]. Chin. Phys. Lett., 2003, 20(11): 098701
Viewed
Full text


Abstract