CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Photoluminescence and X-Ray Photoelectron Spectroscopy of p-Type Phosphorus-Doped ZnO Films Prepared by MOCVD |
LI Xiang-Ping1, ZHANG Bao-Lin1, GUAN He-Song1, SHEN Ren-Sheng2, PENG Xin-Cun1, ZHENG Wei1, XIA Xiao-Chuan1, ZHAO Wang1, DONG Xin1, DU Guo-Tong1,2 |
1State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 1300122School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 |
|
Cite this article: |
LI Xiang-Ping, ZHANG Bao-Lin, GUAN He-Song et al 2009 Chin. Phys. Lett. 26 098101 |
|
|
Abstract Reproducible p-type phosphorus-doped ZnO (p-ZnO:P) films are prepared on semi-insulating InP substrates by metal-organic chemical vapour deposition technology. The electrical properties of these films show a hole concentration of 9.02×1017cm-3, a mobility of 1.05cm2/V s, and a resistivity of 6.6 Ω12539;cm. Obvious acceptor-bound-exciton-related emission and P-induced zinc vacancy (VZn) emission are observed by low-temperature photoluminescence spectra of the films, and the acceptor binding energy is estimated to be about 125meV. The local chemical bonding environments of the phosphorus atoms in the ZnO are also identified by x-ray photoelectron spectra. Our results show direct experimental evidence that PZn-2VZn shallow acceptor complex most likely contributes to the p-type conductivity of ZnO:P films.
|
Keywords:
81.15.Gh
82.80.Pv
78.55.Et
|
|
Received: 16 May 2009
Published: 28 August 2009
|
|
PACS: |
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
82.80.Pv
|
(Electron spectroscopy (X-ray photoelectron (XPS), Auger electron spectroscopy (AES), etc.))
|
|
78.55.Et
|
(II-VI semiconductors)
|
|
|
|
|
[1] Fan H B, Yang S Y, Zhang P F et al 2007 Chin. Phys.Lett. 24 2108 [2] Fan H B, Yang S Y, Zhang P F et al 2008 Chin. Phys.Lett. 25 3093 [3] Lee C M, Park S Y, Lim J M et al 2007 Mater. Lett. 61 2495 [4] Hwang D K, Kim H S, Lim J H et al 2005 Appl. Phys.Lett. 86 151917 [5] Pan X H, Jiang J, Zeng Y J et al 2008 J. Appl. Phys. 103 023708 [6] Ye J D, Gu S L, Li F et al 2007 Appl. Phys. Lett. 90 152108 [7] Ryu Y R, Lee T S and White H W 2003 Appl. Phys.Lett. 83 87 [8] Prze\'zdziecka E, Kami\'nska E, Pasternak I et al 2007 Phys. Rev. B 76 193303 [9] Xiu F X, Yang Z, Mandalapu L J et al 2005 Appl. Phys.Lett. 87 252102 [10] Lee W J, Kang J and Chang K J 2006 Phys. Rev. B 73 024117 [11] Hu G X, Gong H, Chor E F et al 2006 Appl. Phys.Lett. 89 251102 [12] Teke A, \"{Ozg\"{ur \"{U, Dogan S et al 2004 Phys. Rev. B 70 195207 [13] Schirra M, Schneider R, Reiser A et al 2008 Phys.Rev. B 77 125215 [14] So S J and Park C B 2005 J. Cryst. Growth 285606 [15] Lin B X, Fu Z X and Jia Y B 2001 Appl. Phys. Lett. 79 943 [16] Shen W Z and Shen S C 1996 J. Appl. Phys. 805941 [17] Halsted R E and Aven M 1965 Phys. Rev. Lett. 14 64 [18] Look D C and Claflin B 2004 Phys. Status Solidi B 241 624 [19] Lu J G., Liang Q, Zhang Y et al 2007 J. Phys. D:Appl. Phys. 40 3177 [20] Franke R, Chasse T, Streubel P et al 1991 Electron.Spectrosc. Relat. Phenom. 56 381 [21] Gresch R, M\"{ueller-Warmuth W and Dutz H 1970 J.Non-Cryst. Solids 34 127 [22] Limpijumnong S, Zhang S B, Wei S H et al 2004 Phys.Rev. Lett. 92 155504 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|