CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Upper Critical Fields and Anisotropy of BaFe1.9Ni0.1As2 Single Crystals |
TAO Qian1, SHEN Jing-Qin2, LI Lin-Jun1, LIN Xiao1, LUO Yong-Kang1, CAO Guang-Han1, XU Zhu-An1 |
1Department of Physics, Zhejiang University, Hangzhou 3100272Department of Physics, Zhejiang Sci-Tech University, Xiasha College Park, Hangzhou 310018 |
|
Cite this article: |
TAO Qian, SHEN Jing-Qin, LI Lin-Jun et al 2009 Chin. Phys. Lett. 26 097401 |
|
|
Abstract Temperature dependence of the upper critical magnetic field (Hc2) near Tc of 20K in a BaFe1.9Ni0.1As2 single crystal is determined via magneto-resistance measurements, for the out-plane (H⊥ab) and in-plane (H || ab) directions in magnetic fields of up to 8T. The upper critical fields at zero temperature estimated by the Werthamer-Helfand-Hohenberg (WHH) formula are μ0 Hc2||(0)= 137T and μ0 Hc2⊥(0) = 51T, both exceeding the weak-coupling Pauli paramagnetic limit (μ0Hp=1.84Tc). However, the WHH formula could overestimate the μ0Hc2|| (0) value. The anisotropy of upper critical fields is around 3 in the temperature range close to Tc. The result is very similar to the Co-doped 122 superconductor BaFe2-xCoxAs2, indicating that electron-doped 122 superconductors exhibit similar superconducting properties.
|
Keywords:
74.70.Dd
74.25.Op
74.62.Bf
|
|
Received: 26 May 2009
Published: 28 August 2009
|
|
PACS: |
74.70.Dd
|
(Ternary, quaternary, and multinary compounds)
|
|
74.25.Op
|
(Mixed states, critical fields, and surface sheaths)
|
|
74.62.Bf
|
(Effects of material synthesis, crystal structure, and chemical composition)
|
|
|
|
|
[1] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J.Am. Chem. Soc. 130 3296 [2] Chen X H, Wu T, Wu G et al 2008 Nature 354 761 [3] Chen G F, Li Z, Wu D et al 2008 Phys. Rev. Lett. 100 247002 [4] Ren Z A, Lu W, Yang J et al 2008 Chin. Phys. Lett. 25 2215 [5] Wen H H, Mu G, Fang L et al 2008 Europhys. Lett. 82 17009 [6] Wang C, Li L J, Chi S et al. 2008 Europhys. Lett. 83 67006 [7] Chen G F, Li Z, Wu D, Dong J, Li G, Hu W Z, Zheng P, Luo JL, and Wang N L 2008 Chin. Phys. Lett. 25 2235 [8] Li Y K, Lin X, Tao Q, Chen H, Wang C, Li L J, Luo Y K, HeM, Zhu Z W, Cao G H and Xu Z A 2009 Chin. Phys. Lett. 26017402 [9] Jia Y, Cheng P, Fang L et al 2008 Appl. Phys. Lett. 93 032503 [10] Wang Z S, Luo H Q, Ren C et al 2008 Phys. Rev. B 78 140501(R) [11] Yuan H Q, Singleton J, Balakirev F F et al 2009 Nature 457 565 [12] Yamamoto A,Jaroszynski J, Tarantini C et al 2009 Appl. Phys. Lett. 94 062511 [13] Singh D J and Du M H 2008 Phys. Rev. Lett. 100 237003 [14] Dong J, Zhang H J, Xu G et al 2008 Europhys. Lett. 83 27006 [15] Cao G H, Jiang S, Lin X et al 2009 Phys. Rev. B 79 174505 [16] Li L J, Luo Y K, Wang Q B et al 2009 New J. Phys. 11 025008 [17] Wang X F, Wu T, Wu G et al 2009 Phys. Rev. Lett. 102 117005 [18] Sefat A S, Jin R Y, McGuire M A et al 2008 Phys. Rev.Lett. 101 117004 [19] Clogston A M 1962 Phys. Rev. Lett. 9 266 [20] Chandrasekhar B S 1962 Appl. Phys. Lett. 1 7 [21] Kano M, Kohama Y, Graf D et al 2009 arXiv:0904.1418 [22] Lv J P and Chen Q H 2008 Phys. Rev. B 78144507 [23] Zhu Z W, Xu Z A, Lin X et al. 2008 New J. Phys. 10 063021 [24] Shulga S V, Drechsler S L, Fuchs G et al 1998 Phys.Rev. Lett. 80 1730 [25] Askerzade I N, Gencer A and Guclu N 2002 Supercond.Sci. Technol. 15 L13 [26] Werthamer N R, Helfand E and Hohenberg P C 1966 Phys. Rev. 147 295 [27] Gurevich A 2007 Physica C 456 160 [28] Shein I R and Ivanovskii A L 2008 arXiv:0806.0750 [29] Golubov A A, Koshelev A E 2003 Phys. Rev. B 68 104503 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|