CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Conductance in an Aharonov-Bohm Interferometer with Parallel-Coupled Double Dots |
AN Xing-Tao1,2, ZHAO Jin-Rong1,2,3, LIU Jian-Jun1,2 |
1College of Physical Science and Information Engineering, Hebei Normal University, Shijiazhuang, Hebei 0500162Hebei Advanced Thin Films Laboratory, Shijiazhuang, Hebei 0500163First Middle School of Zhangjiakou, Zhangjiakou, Hebei 075000 |
|
Cite this article: |
AN Xing-Tao, ZHAO Jin-Rong, LIU Jian-Jun 2009 Chin. Phys. Lett. 26 097201 |
|
|
Abstract We present a theoretical study of the conductance in an Aharonov-Bohm interferometer containing two coupled quantum dots. The interdot tunneling divides the interferometer into two coupled subrings, where opposite magnetic fluxes are threaded separately while the net flux is kept zero. Using the Green function technique we derive the expression of the linear conductance. It is found that the Aharonov-Bohm effect still exists, and when the level of each dot is aligned, the exchange of the Fano and Breit-Wigner resonances in the conductance can be achieved by tuning the magnetic flux. When the two levels are mismatched the exchange may not happen. Further, for some specific asymmetric systems where the coupling strengths between the two dots and the leads are not equal, the flux can change the Fano resonance into an antiresonance, which is absent in symmetric systems.
|
Keywords:
72.25.Dc
73.63.Nm
72.70.+m
|
|
Received: 10 November 2008
Published: 28 August 2009
|
|
PACS: |
72.25.Dc
|
(Spin polarized transport in semiconductors)
|
|
73.63.Nm
|
(Quantum wires)
|
|
72.70.+m
|
(Noise processes and phenomena)
|
|
|
|
|
[1] Zeng Z Y, Claro F and P\'{erez A 2002 Phys. Rev. B 65 085308 [2] Weichselbaum A and Ulloa S E 2004 Phys. Rev. B 70 195332 [3] K\"{onig J and Gefen Y 2001 Phys. Rev. Lett. 86 3855 [4] Hallberg K et al 2004 Phys. Rev. Lett. 93067203 [5] Kobayashi K et al 2003 Phys. Rev. B 68 235304 [6] Bruder C, Fazio R and Schoeller H 1995 Phys. Rev.Lett. 76 114 [7] Baltin R and Gefen Y 1999 Phys. Rev. Lett. 835094 [8] Kobayashi K, Aikawa H, Katsumoto S and Iye Y 2002 Phys. Rev. Lett. 88 256806 [9] Zhao J Q et al 2008 Chin. Phys. Lett. 25 4381 [10] Gerland U, Delft J V, Costi T A and Oreg Y 2000 Phys. Rev. Lett. 84 3710 [11] Kim T S and Hershfield S 2000 Phys. Rev. Lett. 88 136601 [12] Hofstetter W, K\"{onig J and Schoeller H 2001 Phys. Rev. Lett. 87 156803 [13] K\"{onig J and Gefen Y 2002 Phys. Rev. B 65045316 [14] Utsumi Y, Martinek J, Bruno P and Imamura H 2004 Phys. Rev. B 69 155320 [15] L\"{u R and Liu Z R 2007 Chin. Phys. Lett. 24 195 [16] Kubala B and K\"{onig J 2003 Phys. Rev. B 67 205303 [17] Kubala B and K\"{onig J 2002 Phys. Rev. B 65 245301 [18] Dong B, Djuric I, Cui H L and Lei X L 2004 J.Phys.: Condens. Matter 16 4303 [19] Lu H Z, L\"{u R and Zhu B F 2005 Phys. Rev. B 71 235320 [20] Kang K and Cho S Y 2003 J. Phys.: Condens. Matter 16 117 [21] Bai Z M, Yang M F and Chen Y C 2004 J. Phys.:Condens. Matter 16 2053 [22] Guevara M L L D, Claro F and Orellana P A 2003 Phys. Rev. B 67 195335 [23] Holleitner A W, Decker C R, Qin H, Eberl K and Blick R H2001 Phys. Rev. Lett. 87 256802 [24] Jiang Z T, You J Q, Bian S B and Zheng H Z 2002 Phys. Rev. B 66 205306 [25] Chi F and Li S S 2005 J. Appl. Phys. 97123704 [26] Mourokh L G and Horing N J M 2002 Phys. Rev. B 66 085332 [27] Chi F and Li S S 2006 J. Appl. Phys. 99043705 [28] Yin H T, L\"{u T Q, Liu X J and Xue H J 2009 Chin.Phys. Lett. 26 047302 [29] Huang L, You J Q, Yan X H and Wei S H 2002 Chin.Phys. Lett. 19 1505 [30] Gao W Z, Sun L and Zheng Y S 2007 Chin. Phys. Lett. 24 1693 [31] Zhang G B, Wang S J and Li L 2006 Chin. Phys. Lett. 23 1570 [32] Jauho A P, Wingreen N S and Meir Y 1994 Phys. Rev.B 50 5528 [33] Yacoby A, Heiblum M, Mahalu D and Shtrikman H 1995 Phys. Rev. Lett. 74 4047 [34] He Z B and Xiong Y J 2006 Phys. Lett. A 349276 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|