Chin. Phys. Lett.  2009, Vol. 26 Issue (9): 097201    DOI: 10.1088/0256-307X/26/9/097201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Conductance in an Aharonov-Bohm Interferometer with Parallel-Coupled Double Dots
AN Xing-Tao1,2, ZHAO Jin-Rong1,2,3, LIU Jian-Jun1,2
1College of Physical Science and Information Engineering, Hebei Normal University, Shijiazhuang, Hebei 0500162Hebei Advanced Thin Films Laboratory, Shijiazhuang, Hebei 0500163First Middle School of Zhangjiakou, Zhangjiakou, Hebei 075000
Cite this article:   
AN Xing-Tao, ZHAO Jin-Rong, LIU Jian-Jun 2009 Chin. Phys. Lett. 26 097201
Download: PDF(318KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a theoretical study of the conductance in an Aharonov-Bohm interferometer containing two coupled quantum dots. The interdot tunneling divides the interferometer into two coupled subrings, where opposite magnetic fluxes are threaded separately while the net flux is kept zero. Using the Green function technique we derive the expression of the linear conductance. It is found that the Aharonov-Bohm effect still exists, and when the level of each dot is aligned, the exchange of the Fano and Breit-Wigner resonances in the conductance can be achieved by tuning the magnetic flux. When the two levels are mismatched the exchange may not happen. Further, for some specific asymmetric systems where the coupling strengths between the two dots and the leads are not equal, the flux can change the Fano resonance into an antiresonance, which is absent in symmetric systems.
Keywords: 72.25.Dc      73.63.Nm      72.70.+m     
Received: 10 November 2008      Published: 28 August 2009
PACS:  72.25.Dc (Spin polarized transport in semiconductors)  
  73.63.Nm (Quantum wires)  
  72.70.+m (Noise processes and phenomena)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/9/097201       OR      https://cpl.iphy.ac.cn/Y2009/V26/I9/097201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
AN Xing-Tao
ZHAO Jin-Rong
LIU Jian-Jun
[1] Zeng Z Y, Claro F and P\'{erez A 2002 Phys. Rev. B 65 085308
[2] Weichselbaum A and Ulloa S E 2004 Phys. Rev. B 70 195332
[3] K\"{onig J and Gefen Y 2001 Phys. Rev. Lett. 86 3855
[4] Hallberg K et al 2004 Phys. Rev. Lett. 93067203
[5] Kobayashi K et al 2003 Phys. Rev. B 68 235304
[6] Bruder C, Fazio R and Schoeller H 1995 Phys. Rev.Lett. 76 114
[7] Baltin R and Gefen Y 1999 Phys. Rev. Lett. 835094
[8] Kobayashi K, Aikawa H, Katsumoto S and Iye Y 2002 Phys. Rev. Lett. 88 256806
[9] Zhao J Q et al 2008 Chin. Phys. Lett. 25 4381
[10] Gerland U, Delft J V, Costi T A and Oreg Y 2000 Phys. Rev. Lett. 84 3710
[11] Kim T S and Hershfield S 2000 Phys. Rev. Lett. 88 136601
[12] Hofstetter W, K\"{onig J and Schoeller H 2001 Phys. Rev. Lett. 87 156803
[13] K\"{onig J and Gefen Y 2002 Phys. Rev. B 65045316
[14] Utsumi Y, Martinek J, Bruno P and Imamura H 2004 Phys. Rev. B 69 155320
[15] L\"{u R and Liu Z R 2007 Chin. Phys. Lett. 24 195
[16] Kubala B and K\"{onig J 2003 Phys. Rev. B 67 205303
[17] Kubala B and K\"{onig J 2002 Phys. Rev. B 65 245301
[18] Dong B, Djuric I, Cui H L and Lei X L 2004 J.Phys.: Condens. Matter 16 4303
[19] Lu H Z, L\"{u R and Zhu B F 2005 Phys. Rev. B 71 235320
[20] Kang K and Cho S Y 2003 J. Phys.: Condens. Matter 16 117
[21] Bai Z M, Yang M F and Chen Y C 2004 J. Phys.:Condens. Matter 16 2053
[22] Guevara M L L D, Claro F and Orellana P A 2003 Phys. Rev. B 67 195335
[23] Holleitner A W, Decker C R, Qin H, Eberl K and Blick R H2001 Phys. Rev. Lett. 87 256802
[24] Jiang Z T, You J Q, Bian S B and Zheng H Z 2002 Phys. Rev. B 66 205306
[25] Chi F and Li S S 2005 J. Appl. Phys. 97123704
[26] Mourokh L G and Horing N J M 2002 Phys. Rev. B 66 085332
[27] Chi F and Li S S 2006 J. Appl. Phys. 99043705
[28] Yin H T, L\"{u T Q, Liu X J and Xue H J 2009 Chin.Phys. Lett. 26 047302
[29] Huang L, You J Q, Yan X H and Wei S H 2002 Chin.Phys. Lett. 19 1505
[30] Gao W Z, Sun L and Zheng Y S 2007 Chin. Phys. Lett. 24 1693
[31] Zhang G B, Wang S J and Li L 2006 Chin. Phys. Lett. 23 1570
[32] Jauho A P, Wingreen N S and Meir Y 1994 Phys. Rev.B 50 5528
[33] Yacoby A, Heiblum M, Mahalu D and Shtrikman H 1995 Phys. Rev. Lett. 74 4047
[34] He Z B and Xiong Y J 2006 Phys. Lett. A 349276
Related articles from Frontiers Journals
[1] Samad Javidan* . Spin Filtering in a Nanowire Superlattice by Dresselhause Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2011, 28(8): 097201
[2] HUO Qiu-Hong, WANG Ru-Zhi, CHEN Si-Ying, XUE Kun, YAN Hui. Spin Transport in a Magnetic Superlattice with Broken Two-Fold Symmetry[J]. Chin. Phys. Lett., 2010, 27(6): 097201
[3] FANG Zhong-Hui, ZHANG Xian-Gao, CHEN Kun-Ji, QIAN Xin-Ye, XU Jun, HUANG Xin-Fan, HE Fei. Observation of Coulomb Oscillations with Single Dot Characteristics in Heavy Doped Ultra Thin SOI Nanowires[J]. Chin. Phys. Lett., 2010, 27(5): 097201
[4] Eerdunchaolu, XIN Wei, ZHAO Yu-Wei. Influence of Rashba SOI and Polaronic Effects on the Ground-State Energy of Electrons in Semiconductor Quantum Rings[J]. Chin. Phys. Lett., 2010, 27(1): 097201
[5] PENG Zu-Lin, LIANG S., DENG Luo-Gen. Transition Metal Silicide Nanowires Growth and Electrical Characterization[J]. Chin. Phys. Lett., 2009, 26(12): 097201
[6] ZHU Wei-Ting, REN Qing-Bao, CHEN Qing-Hu,. Variational Study on a Dissipative Two-Level System[J]. Chin. Phys. Lett., 2008, 25(9): 097201
[7] LIU Yu-Min, YU Zhong-Yuan, REN Xiao-Min. Influence of Strain-Reducing Layer on Strain Distribution of Self-Organized InAs/GaAs Quantum Dot and Redshift of Photoluminescence Wavelength[J]. Chin. Phys. Lett., 2008, 25(5): 097201
[8] ZHAO Jun-Qing, QIAO Shi-Zhu, JIA Zhen-Feng, ZHANG Ning-Yu, JI Yan-Ju, PANG Yan-Tao, CHEN Ying, FU Gang. Spin Coulomb Dragging Inhibition of Spin-Polarized Electric Current Injecting into Organic Semiconductors[J]. Chin. Phys. Lett., 2008, 25(12): 097201
[9] PENG Zu-Lin, S. Liang. Electrical and Magnetic Properties of FeSi2 Nanowires[J]. Chin. Phys. Lett., 2008, 25(11): 097201
[10] GAO Wen-Zhu, SUN Lang, ZHENG Yi-Song. Electronic Transport through a Waveguide in the Presence of a Magnetic Obstacle[J]. Chin. Phys. Lett., 2007, 24(6): 097201
[11] LÜ, Rong, LIU Zhi-Rong. Current and Shot Noise in a Quantum Dot Coupled to Ferromagnetic Leads in the Kondo Regime[J]. Chin. Phys. Lett., 2007, 24(1): 097201
[12] ZHANG Guang-Biao, WANG Shun-Jin, LI Lei. Shot Noise in a Mesoscopic Interferometer[J]. Chin. Phys. Lett., 2006, 23(6): 097201
[13] PANG Zhi-Yong, CHEN Yan-Xue, LIU Tian-Tian, ZHANG Yun-Pang, XIE Shi-Jie, YAN Shi-Shen, HAN Sheng-Hao. Giant Magnetoresistance in La0.67Ca0.33MnO3/Alq3/Co Sandwiched-Structure Organic Spin Valves[J]. Chin. Phys. Lett., 2006, 23(6): 097201
[14] JI Gang, YAN Shi-Shen, CHEN Yan-Xue, LIU Guo-Lei, CAO Qiang, MEI Liang-Mo. Enhanced Spin Injection into ZnO Semiconductor Measured by Magnetoresistance[J]. Chin. Phys. Lett., 2006, 23(2): 097201
[15] WANG Yi, SHENG Wei, ZHOU Guang-Hui,. Persistent Spin Current in a Quantum Wire with Weak Rashba Spin--Orbit Coupling[J]. Chin. Phys. Lett., 2006, 23(11): 097201
Viewed
Full text


Abstract