Chin. Phys. Lett.  2009, Vol. 26 Issue (9): 096701    DOI: 10.1088/0256-307X/26/9/096701
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Topological Structure of Vortices in Multicomponent Bose-Einstein Condensates
XU Tao
College of Electric and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
XU Tao 2009 Chin. Phys. Lett. 26 096701
Download: PDF(192KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The structure of the vortex in a two-component Bose-Einstein condensate is studied by the method of Dirac δ function. The vortex can be characterized by the Brouwer degree and Hopf index, i.e., β1η1, β2η2. The circulation of the vortex can be a fraction, which is different from the usual result for a one-component condensate. The kinetic helicity of vortices is calculated.
Keywords: 67.85.Fg      47.32.-y      03.65.Vf.     
Received: 23 March 2009      Published: 28 August 2009
PACS:  67.85.Fg (Multicomponent condensates; spinor condensates)  
  47.32.-y (Vortex dynamics; rotating fluids)  
  03.65.Vf.  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/9/096701       OR      https://cpl.iphy.ac.cn/Y2009/V26/I9/096701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Tao
[1] Matthews M R, Anderson B P, Haljan P C, Hall D S, Wieman CE and Cornell E A 1999 Phys. Rev. Lett. 83 2498
[2] Williams J E and Holland M J 1999 Nature 401568
[3] Inouye S. et al 2001 Phys. Rev. Lett. 87080402
[4] Scherer D R et al 2007 Phys. Rev. Lett. 98110402
[5] Madison K W, Chevy F, Wohlleben W and Dalibard J 2000 Phys. Rev. Lett. 84 806
[6] Nakahara M, Isoshima T, Machida K, Ogawa S I and Ohmi T2000 Physica B 284 17
[7] Salasnich L, Malomed B A and Toigo F 2008 Phys. Rev.A 77 035601
[8] Schweikhard V, Coddington I, Engels P, Tung S and CornellE A 2004 Phys. Rev. Lett. 93 210403
[9] M\"{Ott\"{Oen M M, Pietil\"{a V and Virtanen S M M 2007 Phys. Rev. Lett. 99 250406
[10] Ginzburg V L and Pitaevskii L P 1958 Zh. Eksp. Teor.Fiz. 34 1240
[11] Gross E P 1961 Nuovo Cimento 20 454 Pitaevskii L P 1961 Zh. Eksp. Teor. Fiz. 40 646
[12] Gross E P 1963 J. Math. Phys. 4 195
[13] Xu T 2006 Ann. of Phys. 321 2017
[14] Moffatt H K 1969 J. Fluid Mech. 35 117
[15] Duan Y S, Xu T and Fu L B 1999 Prog. Theor. Phys. 101 467
[16] Ji A C, Liu W M, Song J L and Zhou F 2008 Phys. Rev.Lett. 101 010402
[17] Xu T 2005 Phys. Rev. E 72 036303
[18] Xu T, Su H L, Zhou G and Hu X W 2006 Mod. Phys.Lett. A 21 1369
[19] Faddeev L D 1976 Lett. Math. Phys. 1 289
[20] Faddeev L D and Niemi A J 1997 Nature 387 58 Faddeev L D and Niemi A J 2001 Phil. Trans. A 359 1399
[21] Witten E 1989 Comm. Math. Phys. 121 351 Polyakov A M 1988 Mod. Phys. Lett. A 3 325
[22] Volovik G E and Mineev V P 1977 Zh. Eksp. Teor.Fiz. 72 2256
Related articles from Frontiers Journals
[1] XIA Yong, LU De-Tang, LIU Yang, XU You-Sheng. Lattice Boltzmann Simulation of the Cross Flow Over a Cantilevered and Longitudinally Vibrating Circular Cylinder[J]. Chin. Phys. Lett., 2009, 26(3): 096701
[2] SONG Jun, SONG Jin-Bao. Effects of Buoyancy on Langmuir Circulation[J]. Chin. Phys. Lett., 2008, 25(5): 096701
[3] SUN Liang. Essence of Inviscid Shear Instability: a Point View of Vortex Dynamics[J]. Chin. Phys. Lett., 2008, 25(4): 096701
[4] QIAN Su-Ping, TIAN Li-Xin. Modification of the Clarkson--Kruskal Direct Method for a Coupled System[J]. Chin. Phys. Lett., 2007, 24(10): 096701
[5] TANG Xiao-Yan, HUANG Fei, , LOU Sen-Yue,. Variable Coefficient KdV Equation and the Analytical Diagnoses of a Dipole Blocking Life Cycle[J]. Chin. Phys. Lett., 2006, 23(4): 096701
Viewed
Full text


Abstract