Chin. Phys. Lett.  2009, Vol. 26 Issue (9): 096201    DOI: 10.1088/0256-307X/26/9/096201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Reshock Response of 2A12 Aluminum Alloy at High Pressures
HOU Ri-Li1,2,3, PENG Jian-Xiang1, JING Fu-Qian1, ZHANG Jian-Hua3, ZHOU Ping3
1National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, PO Box 919-102, Mianyang 6219002School of Science, Wuhan University of Technology, Wuhan 4300703The First Aeronautic Institute of the Air Force, Xinyang 464000
Cite this article:   
HOU Ri-Li, PENG Jian-Xiang, JING Fu-Qian et al  2009 Chin. Phys. Lett. 26 096201
Download: PDF(537KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By means of mounting the specimen on a low-impedance buffer, reshock experiments were carried out on a 2A12 aluminum alloy up to shock stresses of 67.6GPa. Reshock wave profiles from the initial shock stresses of 60.9-67.6GPa were measured with a velocity interferometer, and it shows that the 2A12 aluminum alloy characterizes as quasi-elastic response during recompression process. The Lagrange longitudinal velocities along the reloading path from initial shock state were obtained from two shots of experiments, while the bulk velocities at corresponding shock stresses were determined via extrapolating from the public reported unloading plastic sound velocities. Combining the reshock and the release experimental results, the yield strength of 2A12 aluminum alloy at shock stress of 60.9GPa was estimated to be about 1.7GPa.
Keywords: 62.50.+p      62.20.Fe      62.20.Dc      46.35.+z     
Received: 02 February 2009      Published: 28 August 2009
PACS:  62.50.+p  
  62.20.Fe  
  62.20.Dc  
  46.35.+z (Viscoelasticity, plasticity, viscoplasticity)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/9/096201       OR      https://cpl.iphy.ac.cn/Y2009/V26/I9/096201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HOU Ri-Li
PENG Jian-Xiang
JING Fu-Qian
ZHANG Jian-Hua
ZHOU Ping
[1] Asay J R and Chhabildas L C 1981 Shock Wave andHigh-Strain-Rate Phenomena in Metals p 417
[2] Asay J R, Chhabildas L C and Dandekar D P 1980 J.Appl. Phys. 51 4774
[3] Asay J R and Lipkin 1987 J. Appl. Phys. 494242
[4] Aasy J R, Chhabildas L C and Barker L M 1985 SAND-85-2009
[5] Reinhart W D and Chhabildas L C 2003 ShockCompression of Condensed Matter 759
[6] Vogler T J, Reinhart W D and Chhabildas L C 2004 J.Appl.Phys. 95 4173
[7] Vogler T J, Reinhart W D and Chhabildas L C 2006 J.Appl. Phys. 99 023512
[8] Huang H and Asay J R 2005 J. Appl. Phys. 98033524
[9] Yu Y Y et al 2008 J. Appl. Phys. 103 103529
[10] Hu J B, Yu Y Y, Tan H and Dai C D 2005 Chin. Phys.Lett. 22 1265
Related articles from Frontiers Journals
[1] WANG Feng**, PENG Xiao-Shi, JIAO Chun-Ye, LIU Shen-Ye, JIANG Xiao-Hua, DING Yong-Kun . Shock-Timing Experiment Using a Two-Step Radiation Pulse with a Polystyrene Target[J]. Chin. Phys. Lett., 2011, 28(8): 096201
[2] MA Xiao-Juan**, LIU Fu-Sheng, SUN Yan-Yun, ZHANG Ming-Jian, PENG Xiao-Juan, LI Yong-Hong . Effective Shear Viscosity of Iron under Shock-Loading Condition[J]. Chin. Phys. Lett., 2011, 28(4): 096201
[3] ZONG Hai-Tao, MA Ming-Zhen, ZHANG Xin-Yu, QI Li, LI Gong, JING Qin, LIU Ri-Ping** . Formation and Compression Behavior of Two-Phase Bulk Metallic Glasses with a Minor Addition of Aluminum[J]. Chin. Phys. Lett., 2011, 28(3): 096201
[4] ZHANG Fu-Chun**, ZHANG Wei-Hu, DONG Jun-Tang, ZHANG Zhi-Yong . First-Principles Study of Fe-Doped ZnO Nanowires[J]. Chin. Phys. Lett., 2011, 28(12): 096201
[5] SHI Li-Wei, **, DUAN Yi-Feng, YANG Xian-Qing, TANG Gang . Phonon and Elastic Instabilities in Zincblende TlN under Hydrostatic Pressure from First Principles Calculations[J]. Chin. Phys. Lett., 2011, 28(10): 096201
[6] QI Mei-Lan, **, ZHONG Sheng, FAN Duan, LUO Chao, HE Hong-Liang . Microscopic Characteristics of Damage Evolution in Ultrapure Aluminum under Tensile Loading[J]. Chin. Phys. Lett., 2011, 28(1): 096201
[7] MA Dong-Fang, HOU Yan-Jun, CHEN Da-Nian**, WU Shan-Xing, WANG Huan-Ran . A Novel Impact Tension Testing for OFHC Copper Bars under Local Strain Controlled[J]. Chin. Phys. Lett., 2011, 28(1): 096201
[8] SHI Li-Wei, DUAN Yi-Feng, YANG Xian-Qing, QIN Li-Xia. Structural, Electronic and Elastic Properties of Cubic Perovskites SrSnO3 and SrZrO3 under Hydrostatic Pressure Effect[J]. Chin. Phys. Lett., 2010, 27(9): 096201
[9] B. Y. Thakore, S. G. Khambholja, P. H. Suthar, N. K. Bhatt, A. R. Jani. Collective Modes and Elastic Constants of Liquid Al83Cu17 Binary Alloy[J]. Chin. Phys. Lett., 2010, 27(9): 096201
[10] SHI Li-Wei, DUAN Yi-Feng, QIN Li-Xia. Structural Stability and Elastic Properties of Wurtzite TlN under Hydrostatic Pressure[J]. Chin. Phys. Lett., 2010, 27(8): 096201
[11] YANG Fan, ZHU Ke-Qin. Generalized Lorenz Equation Derived from Thermal Convection of Viscoelastic Fluids in a Loop[J]. Chin. Phys. Lett., 2010, 27(3): 096201
[12] YANG Fan, ZHU Ke-Qin. Can We Obtain a Fractional Lorenz System from a Physical Problem?[J]. Chin. Phys. Lett., 2010, 27(12): 096201
[13] YOU Shu-Jie, CHEN Liang-Chen, JIN Chang-Qing. Hydrostaticity of Pressure Media in Diamond Anvil Cells[J]. Chin. Phys. Lett., 2009, 26(9): 096201
[14] ZHU Zun-Lue, FU Hong-Zhi, SUN Jin-Feng, LIU Yu-Fang, SHI De-Heng, XU Guo-Liang. First-Principles Calculations of Elastic and Thermal Properties of Molybdenum Disilicide[J]. Chin. Phys. Lett., 2009, 26(8): 096201
[15] SONG Hai-Feng, LIU Hai-Feng, ZHANG Guang-Cai, ZHAO Yan-Hong. Numerical Simulation of Wave Propagation and Phase Transition of Tin under Shock-Wave Loading[J]. Chin. Phys. Lett., 2009, 26(6): 096201
Viewed
Full text


Abstract