FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Interaction of a Two-Level Atom with the Morse Potential in the Framework of Jaynes-Cummings Model |
M. R. Setare1, Sh. Barzanjeh2 |
1Department of Science, Payame Noor University, Bijar, Iran2Department of Physics, Faculty of Science, University of Isfahan, Hezar Jerib, Isfahan, Iran |
|
Cite this article: |
M. R. Setare, Sh. Barzanjeh 2009 Chin. Phys. Lett. 26 094211 |
|
|
Abstract A theoretical study of the dynamical behaviors of the interaction between a two-level atom with a Morse potential in the framework of the Jaynes-Cummings model (JCM) is discussed. We show that this system is equivalent to an intensity-dependent coupling between the two-level atom and the non-deformed single-mode radiation field in the presence of an additional nonlinear interaction. We study the dynamical properties of the system such as, atomic population inversion, the probability distribution of cavity-field, the Mandel parameter and atomic dipole squeezing. It is shown how the depth of the Morse potential can be affected by non-classical properties of the system. Moreover, the temporal evolution of the Husimi-distribution function is explored.
|
Keywords:
42.50.Ct
42.50.Ar
42.50.Dv.
|
|
Received: 08 February 2009
Published: 28 August 2009
|
|
|
|
|
|
[1] Jaynes E T and Cummings F 1963 Proc. IEEE 5189 [2] Yoo H I et al 1981 J. Phys. A 14 1383 Eberly J H et al 1980 Phys. Rev. Lett. 44 1323 [3] Kuklinski J R et al 1988 Phys. Rev. A 37 3175 [4] Barnett S M 1987 Opt. Commun. 61 432 Zhou P and Peng J S 1991 Phys. Rev. A 44 3331 [5] Morse P M 1929 Phys. Rev. 34 57 Landau L D and Lifshitz E M 1965 Quantum MechanicsNonrelativistic Theory (Oxford: Pergamon) [6] Dong S H 2002 Can. J. Phys 80 129 Dong S H et al 2002 Int. J. Quan. Chem. 86 433 Dong S and Dong S H 2002 Czech. J. Phys. 52153 Dong S H et al 2003 Int. J. Mod. Phys. E 12809 Dong S H and Ma Z Q 2002 Int. J. Mod. Phys. E 11 155 [7] Gangopadhyay G and Ray D S 1990 Phys. Rev. A 41 6429 [8] Benedict M G and Moln\'{ar B 1999 Phys. Rev. A 60 [9] Cooper I L 1992 J. Phys. A: Math. Gen 25 1671 [10] Kais S and Levine R D 1990 Phys. Rev. A 412301 [11] Gerry G C 1986 Phys. Rev. A 33 2207 [12] Nieto M M et al 1979 J. Phys. Rev. A 19 438 Nieto M M et al 1979 J. Phys. Rev. D 20 1321 Nieto M M et al 1979 J. Phys. Rev. D 20 1342 Nieto M M 1980 Phys. Rev. D 22 403 [13] Macfarlane A J 1989 J. Phys. A 22 4581 [14] Biedenharn L C 1989 J. Phys. A 22 L873 [15] Chaichian M and Kulish P 1990 Phys. Lett. B 234 72 [16] Chaichian M et al 1990 Phys. Rev. Lett. 65980 [17] Buzek V 1992 J. Mod. Phys. 39 949 [18] Naderi M H et al 2004 J. Phys. Soc. Jpn. 732413 [19] Schleish W P 2001 Quantum Optics in Phase Space(Berlin: Springer). [20] Cahill K E and Glaube R J 1969 Phys. Rev 1771857 [21] Cahill K E and Glaube R J 1969 Phys. Rev 1771882 [22] Matsuo K 1994 Phys. Rev. A 50 649 [23] Dong H T et al 1990 Opt. Commun. 79 462 [24] Dong H T et al 1991 J. Mod. Opt. 38 2969 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|