Chin. Phys. Lett.  2009, Vol. 26 Issue (9): 094201    DOI: 10.1088/0256-307X/26/9/094201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
High-Q Microcavity in Two-Dimensional Diamond Photonic Crystal Thin Films Realized via a Mode Gap
ZHOU Chang-Zhu, XIONG Zhi-Gang, LI Zhi-Yuan
Laboratory of Optical Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, PO Box 603, Beijing 100190
Cite this article:   
ZHOU Chang-Zhu, XIONG Zhi-Gang, LI Zhi-Yuan 2009 Chin. Phys. Lett. 26 094201
Download: PDF(1035KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We design high quality factor (Q) photonic crystal microcavities in diamond films for applications in quantum information based on color centers. A photonic microcavity made from a waveguide heterostructure with a mode gap is demonstrated to have a high Q factor over 1051400 and a modal volume V of 2.24 cubic wavelengths by modifying the mode gap width and the tapered region geometry. Besides its ultrahigh Q factor, the waveguide-like geometry of the cavity allows for easy on-chip transportation of quantum information between different cavities.
Keywords: 42.70.Qs      42.82.Gw      42.55.Sa     
Received: 19 December 2008      Published: 28 August 2009
PACS:  42.70.Qs (Photonic bandgap materials)  
  42.82.Gw (Other integrated-optical elements and systems)  
  42.55.Sa (Microcavity and microdisk lasers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/9/094201       OR      https://cpl.iphy.ac.cn/Y2009/V26/I9/094201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Chang-Zhu
XIONG Zhi-Gang
LI Zhi-Yuan
[1] Wrachtrup J and Jelezko F 2006 J. Phys.: Condens.Matter. 18 S807
[2] Kurtsiefer C, Mayer S, Zarda P and Weinfurter H 2000 Phys. Rev. Lett. 85 290
[3] Jelezko F, Gaebel T, Popa I, Domhan M, Gruber A andWrachtrup J 2004 Phys. Rev. Lett. 93 130501
[4] Greentree A D, Salzman J, Prawer S and Hollenberg L C L2006 Phys. Rev. A 73 013818
[5] Lim Y L, Beige A and Kwek L C 2005 Phys. Rev. Lett. 95 030505
[6] Andreani L C and Panzarini G 1999 Phys. Rev. B 60 13276
[7] Noda S 2006 J. Lightwave Technol. 24 4554
[8] Kreuzer C, Riedrich-Moller J, Neu E and Becher C 2008 Opt. Express 16 1632
[9] Kwon S H, Sunner T, Kamp M and Forchel A 2008 Opt.Express 16 4605
[10] Akahane Y, Asano T, Song B S and Noda S 2003 Nature 425 944
[11] Li Z Y and Ho K M 2003 Phys. Rev. B 68 245117
[12] Akahane Y, Asano T, Takano H, Song B S, Takana Y and NodaS 2005 Opt. Express 13 2512
[13] Takano H, Song B S, Asano T and Noda S 2006 Opt.Express 14 3491
Related articles from Frontiers Journals
[1] ZHOU Hai-Chun, YANG Guang, WANG Kai, LONG Hua, LU Pei-Xiang. Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film[J]. Chin. Phys. Lett., 2012, 29(6): 094201
[2] ZHOU Yan, YIN Li-Qun. Self-Detection of Leaking Pipes by One-Dimensional Photonic Crystals[J]. Chin. Phys. Lett., 2012, 29(6): 094201
[3] ZHU Yun-Jin, HUANG Xu-Guang, MEI Xian. A Surface Plasmon Polariton Electro-Optic Switch Based on a Metal-Insulator-Metal Structure with a Strip Waveguide and Two Side-Coupled Cavities[J]. Chin. Phys. Lett., 2012, 29(6): 094201
[4] ZHANG Li-Wei, ZHANG Ye-Wen, HE Li, WANG You-Zhen. Experimental Study of Tunneling modes in Photonic Crystal Heterostructure Consisting of Single-Negative Materials[J]. Chin. Phys. Lett., 2012, 29(6): 094201
[5] HAN Ying,**,HOU Lan-Tian,ZHOU Gui-Yao,YUAN Jin-Hui,XIA Chang-Ming,WANG Wei,WANG Chao,HOU Zhi-Yun,. Flat Supercontinuum Generation within the Telecommunication Wave Bands in a Photonic Crystal Fiber with Central Holes[J]. Chin. Phys. Lett., 2012, 29(5): 094201
[6] LI Heng,SHENG Chuan-Xiang**,CHEN Qian. Optical Bistability in Ag/Dielectric Multilayers[J]. Chin. Phys. Lett., 2012, 29(5): 094201
[7] LI Cheng-Guo, GAO Yong-Hao, XU Xing-Sheng. Angular Tolerance Enhancement in Guided-Mode Resonance Filters with a Photonic Crystal Slab[J]. Chin. Phys. Lett., 2012, 29(3): 094201
[8] WU Hong, JIANG Li-Yong, JIA Wei, LI Xiang-Yin. Polarization Beam Splitter Based on an Annular Photonic Crystal of Negative Refraction[J]. Chin. Phys. Lett., 2012, 29(3): 094201
[9] HAN Ying, **, HOU Lan-Tian, YUAN Jin-Hui, XIA Chang-Ming, ZHOU Gui-Yao,. Ultraviolet Continuum Generation in the Fundamental Mode of Photonic Crystal Fibers[J]. Chin. Phys. Lett., 2012, 29(1): 094201
[10] CHEN Xi-Yao**, LIN Gui-Min, LI Jun-Jun, XU Xiao-Fu, JIANG Jun-Zhen, QIANG Ze-Xuan, QIU Yi-Shen, LI Hui. Polarization Beam Splitter Based on a Self-Collimation Michelson Interferometer in a Silicon Photonic Crystal[J]. Chin. Phys. Lett., 2012, 29(1): 094201
[11] ZHANG Xuan, CHEN Shu-Wen, LIAO Qing-Hua**, YU Tian-Bao, LIU Nian-Hua, HUANG Yong-Zhen . Design of a Novel Polarized Beam Splitter Based on a Two-Dimensional Photonic Crystal Resonator Cavity[J]. Chin. Phys. Lett., 2011, 28(8): 094201
[12] ZHU Jia-Hu, HUANG Xu-Guang**, MEI Xian . Double-Teeth-Shaped Plasmonic Waveguide Electro-Optical Switches[J]. Chin. Phys. Lett., 2011, 28(8): 094201
[13] ZHU Jia-Hu, HUANG Xu-Guang**, MEI Xian . High-Resolution Plasmonic Refractive-Index Sensor Based on a Metal-Insulator-Metal Structure[J]. Chin. Phys. Lett., 2011, 28(5): 094201
[14] FANG Yi-Jiao, CHEN Zhuo**, WANG Zhen-Lin . Slow-Light Propagation in a Tapered Dielectric Periodic Waveguide over Broad Frequency Range[J]. Chin. Phys. Lett., 2011, 28(5): 094201
[15] LIU Hong-Wei**, KAN Qiang, WANG Chun-Xia, HU Hai-Yang, XU Xing-Sheng, CHEN Hong-Da . Light Extraction Enhancement of GaN LED with a Two-Dimensional Photonic Crystal Slab[J]. Chin. Phys. Lett., 2011, 28(5): 094201
Viewed
Full text


Abstract