Chin. Phys. Lett.  2009, Vol. 26 Issue (9): 092903    DOI: 10.1088/0256-307X/26/9/092903
NUCLEAR PHYSICS |
Angular Distribution of Synchrotron Radiation in Low Frequency
WU Jian-Qing, YANG Zhi-Liang, NI Lei, ZHANG Tong-Jie
Department of Astronomy, Beijing Normal University, Beijing 100875
Cite this article:   
WU Jian-Qing, YANG Zhi-Liang, NI Lei et al  2009 Chin. Phys. Lett. 26 092903
Download: PDF(308KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The angular distribution of energy for synchrotron radiation in low frequency band (ω«ωc) is obtained by rigorously solving the Nicolo Tartaglia equation. The result shows that the critical angle increases with decreasing frequency, but it cannot exceed 90°. The relation between critical angle θc and frequency is common covering all wavelengths. For the small angle case, it is consistent with the result obtained by Jackson. With the increase of emanative angle, the radiant intensity increases first, then decays.
Keywords: 29.20.dk      29.30.Dn      41.60.Ap     
Received: 19 January 2009      Published: 28 August 2009
PACS:  29.20.dk (Synchrotrons)  
  29.30.Dn (Electron spectroscopy)  
  41.60.Ap (Synchrotron radiation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/9/092903       OR      https://cpl.iphy.ac.cn/Y2009/V26/I9/092903
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Jian-Qing
YANG Zhi-Liang
NI Lei
ZHANG Tong-Jie
[1] Rybicki G B et al 1979 Radiative Processes inAstrophysics (New York: John Wiley and Sons) chap 6 p 167
[2]Jackson J D 2004 Classical Electrodynamics (Beijing:Higher Educational Press) chap 14 p 661
[3]Li Z W and Xiao X H 1999 Astrophysics (Beijing:Higher Educational Press) chap 2 p 35 (in Chinese)
[4]You J H 1998 Radiative Processes in Astrophysics(Beijing: Science Press) chap 1 p 10 (in Chinese)
[5]Nodvick J S and Saxon D S 1954 Phys. Rev. 96180
[6]Michel F C 1982 Phys. Rev. Lett. 48 9
[7]Yarwood J et al 1984 Nature 312 742
[8]Williams G P et al 1989 Phys. Rev. Lett. 62 261
[9]Blum E B, Siemann R H and Auston D H 1983 Nucl.Instrum. Methods Phys. Res. 207 321
[10]Zhu J B et al 2000 Nucl. Instrum. Methods Phys. Res.A 447 587
[11]Zhu J B et al 2001 High Energy Phys. Nucl. Phys. 25 5 (in Chinese)
[12]Nakazato T et al 1989 Phys. Rev. Lett. 63 12
[13]Ishi K, Shibata Y et al 1991 Phys. Rev. A 4310
[14]Han J L 2002 Journal of Electrical and ElectronicTeaching 24 5 (in Chinese)
[15]Wang S G 1988 Radio Astronomy Method (Beijing:Science Press) chap 9 p 221 (in Chinese)
[16]Jin Y M 2001 Electronic Storage Ring Physics (Hefei:University of Science and Technology of China) chap 7 p 112 (inChinese)
[17]Schwinger J 1949 Phys. Rev. 75 12
Related articles from Frontiers Journals
[1] ZHANG Wang, YAO Li-De, YOU Shu-Jie, YANG Liu-Xiang, YANG Hua, LI Feng-Ying, CHEN Liang-Chen, BAO Zhong-Xing, LI Xiao-Dong, LIU Jing, JIN Chang-Qing, YU Ri-Cheng. Structural Stability of CaCuMn6O12 under High Pressure and Low Temperature[J]. Chin. Phys. Lett., 2007, 24(2): 092903
[2] PAN Yue-Wu, QU Sheng-Chun, GAO Chun-Xiao, HAN Yong-Hao, LUO Ji-Feng, CUI Qi-Liang, LIU Jing, ZOU Guang-Tian. Structural Phase Transformations of ZnS Nanocrystalline Under High Pressure[J]. Chin. Phys. Lett., 2004, 21(1): 092903
Viewed
Full text


Abstract