Chin. Phys. Lett.  2009, Vol. 26 Issue (9): 090507    DOI: 10.1088/0256-307X/26/9/090507
GENERAL |
Adaptive Functional Projective Lag Synchronization of a Hyperchaotic Rössler System
Tae H. Lee, Ju H. Park
Nonlinear Dynamics Group, Department of Electrical Engineering, Yeungnam University, 214-1 Dae-Dong, Kyongsan 712-749, Republic of Korea
Cite this article:   
Tae H. Lee, Ju H. Park 2009 Chin. Phys. Lett. 26 090507
Download: PDF(273KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We explain the functional projective lag synchronization of a hyperchaotic Rössler system with four unknown parameters, where the output of the master system lags behind the output of the slave system proportionally. Based on Lyapunov stability theory, an active control method and adaptive control law are employed to make the states of two hyperchaotic Rössler systems asymptotically synchronized. Finally, some numerical examples are provided to show the effectiveness of our results.
Keywords: 05.45.Gg     
Received: 06 May 2009      Published: 28 August 2009
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/9/090507       OR      https://cpl.iphy.ac.cn/Y2009/V26/I9/090507
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tae H. Lee
Ju H. Park
[1] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Chen Y, An H and Li Z 2008 Appl. Math. Comput. 197 96
[3] Park J H 2007 Chaos Solitons Fractals 34 1154
[4] Lu J, Wu X and L\"{u J 2002 Phys. Lett. A 305365
[5] Wang C C and Su J P 2004 Chaos Solitons Fractals 20 967
[6] Park J H 2006 Chaos Solitons Fractals 27 357
[7] Park J H 2006 Chaos Solitons Fractals 27 549
[8] Rosenblum M G and Pikovsky A S, Kurths J 1996 Phys.Rev. Lett. 76 1804
[9] Rulkov N F, Sushchik M M and Tsimring L S 1995 Phys.Rev. E 51 980
[10] Yan Z and Yu P 2007 Chaos Solitons Fractals 33 419
[11] Wu L and Zhu S 2003 Phys. Lett. A 315 101
[12] Zhang Q and Lu J A 2008 Phys. Lett. A 3721416
[13] Boccaletti S and Valladares D L 2000 Phys. Rev. E 62 7497
[14] Hramov A E and Koronovsii A A 2004 Chaos 14603
[15] Hramov A E and Koronovsii A A 2005 Europhys. Lett. 72 901
[16] Jia Q 2007 Phys. Lett. A 370 40
[17] Zheng S, Bi Q and Cai G 2009 Phys. Lett. A 373 1553
[18] Park J H 2005 Chaos Solitons Fractals 25 333
[19] Tang X H, Lu J A and Zhang W W 2007 Chin. Dynam.Control. 0705 216
[20] Runzi L 2008 Phys. Lett. A 372 3667
[21] R\"{ossler O E 1979 Phys. Lett. A 71 155
[22] Chen S H, Hua J, Wang C P and Lu J H 2004 Phys.Lett. A 321 50
[23] Feng J W, Chen S H and Wang C P 2005 Chaos SolitonsFractals 26 1163
[24] Li Y, Tang W K S and Chen G 2005 Int. J. Bifur.Chaos 15 3367
[25] Hua C, Guan X and Shi P 2005 Chaos SolitonsFractals 23 757
[26] Slotine J E and Li W 1991 Applied NonlinearControl (New Jersey: Prentice-Hall)
Related articles from Frontiers Journals
[1] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 090507
[2] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 090507
[3] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 090507
[4] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 090507
[5] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 090507
[6] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 090507
[7] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 090507
[8] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 090507
[9] ZHANG Ying-Qian, WANG Xing-Yuan** . A Parameter Modulation Chaotic Secure Communication Scheme with Channel Noises[J]. Chin. Phys. Lett., 2011, 28(2): 090507
[10] LI Hai-Yan**, HU Yun-An . Backstepping-Based Synchronization Control of Cross-Strict Feedback Hyper-Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(12): 090507
[11] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 090507
[12] SHANG Hui-Lin. Control of Fractal Erosion of Safe Basins in a Holmes–Duffing System via Delayed Position Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 090507
[13] DU Mao-Kang**, HE Bo, WANG Yong . Security Analysis of a Block Encryption Algorithm Based on Dynamic Sequences of Multiple Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(1): 090507
[14] XU Jie, LONG Ke-Ping, FOURNIER-PRUNARET Danièle, TAHA Abdel-Kaddous, CHARGE Pascal. Chaotic Dynamics in a Sine Square Map: High-Dimensional Case (N≥3)[J]. Chin. Phys. Lett., 2010, 27(8): 090507
[15] LU Xiao-Qing, Francis Austin, CHEN Shi-Hua. Cluster Consensus of Nonlinearly Coupled Multi-Agent Systems in Directed Graphs[J]. Chin. Phys. Lett., 2010, 27(5): 090507
Viewed
Full text


Abstract