Chin. Phys. Lett.  2009, Vol. 26 Issue (9): 090506    DOI: 10.1088/0256-307X/26/9/090506
GENERAL |
Control of a Unified Chaotic System via Single Variable Feedback
GUO Rong-Wei1, U. E. Vincent2,3
1Department of Mathematical and Physical Sciences, Shandong Institute of Light Industry, Jinan 2503532Institute of Theoretical Physics, Technical University of Clausthal, Arnold-Sommer Str. 6, 38678 Clausthal-Zellerfeld, Germany3Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
Cite this article:   
GUO Rong-Wei, U. E. Vincent 2009 Chin. Phys. Lett. 26 090506
Download: PDF(400KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the LaSalle invariance principle, we propose a simple adaptive-feedback for controlling the unified chaotic system. We show explicitly with numerical proofs that our method can easily achieve the control of chaos in the unified chaotic system using only a single variable feedback. The present controller, to our knowledge, is the simplest control scheme for controlling a unified chaotic system.
Keywords: 05.45.Gg      87.10.+e      87.19.La     
Received: 15 March 2009      Published: 28 August 2009
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  87.10.+e  
  87.19.La  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/9/090506       OR      https://cpl.iphy.ac.cn/Y2009/V26/I9/090506
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUO Rong-Wei
U. E. Vincent
[1] Ott E, Grebogi C and Yorke J A 1990 Phys. Rev. Lett. 64 1196
[2] Boccaletti S, Grebogi C, Lai Y C, Mancini H and Maza D2000 Phys. Reports 329 103
[3] Yang L, Liu Z and Mao J M 2000 Phys. Rev. Lett. 84 67
[4] Huang D 2004 Phys. Rev. Lett. 93 214101
[5] Singer J, Wang Y Z and Bau H H 1991 Phys. Rev. Lett. 66 1123
[6] Auerbach D, Grebogi C, Ott E and Yorke J A 1992 Phys.Rev. Lett. 69 3479
[7] Corron N J, Pethel S D and Hopper B A 2000 Phys. Rev.Lett. 84 3835
[8] Pyragas K 1992 Phys. Lett. A 170 421
[9] Li W L, Chen X Q and Shen Z P 2008 Chin. Phys. B 17 88
[10] Yang T 2001 Impulsive Systems and Control: Theoryand Applications (New York: Nova Science)
[11] Chen D, Sun J and Huang C 2006 Chaos, SolitonsFractals 28 213
[12] Chen B, Liu X and Tong S 2007 Chaos, SolitonsFractals 34 1180
[13] Vincent U E, Njah A N and Laoye J A 2007 Physica D 231 130
[14] Lorenz E N 1963 J. Atmos. Sci 20 130
[15] Chen G and Ueta T 1999 Int. J. Bifur. Chaos 91465
[16] L\"u J and Chen G 2002 Int. J. Bifur. Chaos 12 659
[17] L\"u J, Chen G, Cheng D and \v{Celikovsk\'{y S 2002 Int. J. Bifur. Chaos 12 2917
[18] L\"{u J, Wu X and L\"u J 2002 Phys. Lett. A 305 365
[19] Lu J A, Tao C H, L\"u J H and Liu M 2002 Chin. Phys.Lett. 19 632
[20] Wang H, Han Z, Zhang W and Xie Q 2008 J. SoundVibration 320 365
[21] Guo R W 2008 Phys. Lett. A 372 5593
[22] Guo R, Vincent U E and Idowu B A 2009 PhysicaScripta 79 035801
[23] Vincent U E and Guo R 2009 Commun. Nonlear. Sci.Numer. Simulat. 14 3925
Related articles from Frontiers Journals
[1] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 090506
[2] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 090506
[3] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 090506
[4] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 090506
[5] ZHAO Qing-Bai, LIAO Meng-Jie, CHEN Qi-Cai** . Emergence of Small-World and Limitations to Its Maximization in a Macaque Cerebral Cortical Network[J]. Chin. Phys. Lett., 2011, 28(6): 090506
[6] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 090506
[7] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 090506
[8] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 090506
[9] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 090506
[10] ZHANG Ying-Qian, WANG Xing-Yuan** . A Parameter Modulation Chaotic Secure Communication Scheme with Channel Noises[J]. Chin. Phys. Lett., 2011, 28(2): 090506
[11] LI Hai-Yan**, HU Yun-An . Backstepping-Based Synchronization Control of Cross-Strict Feedback Hyper-Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(12): 090506
[12] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 090506
[13] ZHANG Yan-Ping, HE Ji-Zhou**, XIAO Yu-Ling . An Approach to Enhance the Efficiency of a Brownian Heat Engine[J]. Chin. Phys. Lett., 2011, 28(10): 090506
[14] SHANG Hui-Lin. Control of Fractal Erosion of Safe Basins in a Holmes–Duffing System via Delayed Position Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 090506
[15] DU Mao-Kang**, HE Bo, WANG Yong . Security Analysis of a Block Encryption Algorithm Based on Dynamic Sequences of Multiple Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(1): 090506
Viewed
Full text


Abstract