Chin. Phys. Lett.  2009, Vol. 26 Issue (9): 090505    DOI: 10.1088/0256-307X/26/9/090505
GENERAL |
Miscellaneous Rotating Solitary Waves to a Coupled Dispersionless System
Kuetche Kamgang Victor1,2, Gambo Betchewe1,2,3, Bouetou Bouetou Thomas1,2,4, Timoleon Crepin Kofane2,4
1Ecole Nationale Supérieure Polytechnique, University of Yaounde I, PO Box 8390, Cameroon2Department of Physics, Faculty of Science, University of Yaounde I, PO Box. 812, Cameroon3Higher Teacher's Training College of Maroua, University of Maroua, P.O. Box. 46, Cameroon4The Abdus Salam International Centre for Theoretical Physics, P.O. Box 586, Strada Costiera, II-34014, Trieste, Italy
Cite this article:   
Kuetche Kamgang Victor, Gambo Betchewe, Bouetou Bouetou Thomas et al  2009 Chin. Phys. Lett. 26 090505
Download: PDF(452KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the soliton structure of a coupled dispersionless system describing a current-conducting string with infinite length within a magnetic field. Thus, following Hirota's method, we unwrap three typical localized waves with nonzero angular momentum depending strongly upon their angular velocities. Illustrating the soliton behavior of these waves, we focus our interests on breather-like waves and depict the elastic scattering amongst such waves.
Keywords: 05.45.Yv     
Received: 14 April 2009      Published: 28 August 2009
PACS:  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/9/090505       OR      https://cpl.iphy.ac.cn/Y2009/V26/I9/090505
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kuetche Kamgang Victor
Gambo Betchewe
Bouetou Bouetou Thomas
Timoleon Crepin Kofane
[1]Konno K and Kakuhata H 1996 J. Phys. Soc. Jpn. 65 340
[2] Kakuhata H and Konno K 1997 J. Phys. A: Math. Gen. 30 L401
[3] Kakuhata H and Konno K 2002 Theor. Math. Phys. 133 1675
[4] Gambo B, Kuetche K V, Bouetou B T and Kofane T C 2009 Chin. Phys. Lett. 26 060503
[5] Hirota R 1988 Direct Methods in Soliton Theory(Berlin: Springer)
[6] Kuetche K V, Bouetou B T and Kofane T C 2007 J. Phys. Soc. Jpn. 76 126001
[7] Kakuhata H and Konno K 2002 Theor. Math. Phys. 133 1675
[8] Kuetche K V, Bouetou B T and Kofane T C 2008 Chin.Phys. Lett. 25 1972
[9] Kuetche K V, Bouetou B T and Kofane T C 2008 Chin.Phys. Lett. 25 425
[10] Bouetou B T, Kuetche K V and Kofane T C 2008 Chin.Phys. Lett. 25 3173
[11] Konno K and Kakuhata H 1996 J. Phys. Soc. Jpn. 65 340
[12] Kakuhata H and Konno K 1997 J. Phys. A: Math. Gen. 30 L401
[13] Alagesan T and Porsezian K 1997 Chaos SolitonsFractals 8 1645
[14] Kuetche K V, Gambo B, Bouetou B T and Kofane T C 2009 Chin. Phys. Lett. 26 030506
[15] Drazin P G and Johnson R S 1989 Solitons: anIntroduction (Cambridge: Cambridge Univ. Press)
[16] Ablowitz M J and Clarkson P A 1991 Solitons,Nonlinear Evolution Equations and Inverse Scattering (Cambridge:Cambridge University)
[17] Kuetche K V, Bouetou B T and Kofane T C 2009 SolitonStructures in Barothropic Relaxing Media in Handbook of Solitons:Research, Technology and Applications (New York: Nova Science)
[18] Matveev V B and Salle M A 1991 Darboux Transformationsand Solitons (Berlin: Springer)
[19] Boyd R W 1992 Nonlinear Optics (Boston: Academic)
[20] Kuetche K V, Bouetou B T and Kofane T C 2007 J. Phys.Soc. Jpn. 76 073001
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 090505
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 090505
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 090505
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 090505
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 090505
[6] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 090505
[7] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 090505
[8] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 090505
[9] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 090505
[10] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 090505
[11] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 090505
[12] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 090505
[13] ZHANG Zhi-Qiang, WANG Deng-Long**, LUO Xiao-Qing, HE Zhang-Ming, DING Jian-Wen . Controlling of Fusion of Two Solitons in a Two-Component Condensate by an Anharmonic External Potential[J]. Chin. Phys. Lett., 2011, 28(5): 090505
[14] WU Jian-Ping** . A New Wronskian Condition for a (3+1)-Dimensional Nonlinear Evolution Equation[J]. Chin. Phys. Lett., 2011, 28(5): 090505
[15] XIN Xiang-Peng, LIU Xi-Qiang, ZHANG Lin-Lin . Symmetry Reduction, Exact Solutions and Conservation Laws of the Modified Kadomtzev–Patvishvili-II Equation[J]. Chin. Phys. Lett., 2011, 28(2): 090505
Viewed
Full text


Abstract