Chin. Phys. Lett.  2009, Vol. 26 Issue (9): 090504    DOI: 10.1088/0256-307X/26/9/090504
GENERAL |
A New 3D Four-Wing Chaotic System with Cubic Nonlinearity and Its Circuit Implementation
LIU Xing-Yun
College of Physics and Electronic Science, Hubei Normal University, Huangshi 435002Hubei Key Laboratory of Bioanalytical Technique, Hubei Normal University, Huangshi 435002
Cite this article:   
LIU Xing-Yun 2009 Chin. Phys. Lett. 26 090504
Download: PDF(1461KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new 3D four-wing smooth autonomous chaotic system in which each equation contains a cubic product term is presented and physically implemented. Spectral analysis shows that the four-wing chaotic attractor has extremely wide frequency bandwidth compared with that of the Lorenz system and other four-wing chaotic systems, which is important in some relevant engineering applications such as secure communications.
Keywords: 05.45.Vx      05.45.Gg     
Received: 26 March 2009      Published: 28 August 2009
PACS:  05.45.Vx (Communication using chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/9/090504       OR      https://cpl.iphy.ac.cn/Y2009/V26/I9/090504
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Xing-Yun
[1] Chen G and Dong X 1998 From Chaos to Order(Singapore: World Scientific) chap 11 p 537
[2] Chen G and L\"{u J 2003 Dynamical Analysis, Controland Synchronization of the Generalized Lorenz Systems Family(Beijing: Science Press) p 183 (in Chinese)
[3] Chua L O and Roska T 1993 IEEE Trans. Circuits Syst.I 40 147
[4] Suykens J A K and Vandewalle J 1993 IEEE Trans.Circuits Syst. I 40 861
[5] Yalcin M E et al 2002 Int. J. Bifur. Chaos 1223
[6] L\"{u J et al 2004 Automatica 40 1677
[7] L\"{u J, Chen G and Yu X 2004 IEEE Trans. CircuitsSyst. I 51 2476
[8] Zhong G 1994 IEEE Trans. Circuits Syst. I 41934
[9] Van\v{c\v{cek A and \v{Celikovsk\'{y S 1996 Control Systems: From Linear Analysis to Synthesis of Chaos(London: Prentice-Hall) p 24
[10] Chen G and Ueta T 1999 Int. J. Bifur. Chaos 91465
[11] L\"{u J et al 2002 Int. J. Bifur. Chaos 122917
[12] \v{Celikovsk\'{y S and Chen G 2002 Int. J. Bifur.Chaos 12 1789
[13] Qi G et al 2005 Chaos, Solitons Fractals 231671
[14] Qi G and Chen G 2006 Phys. Lett. A 352 386
[15] Qi G, Chen G and Zhang Y 2008 Chaos, SolitonsFractals 38 705
[16] Zhao L et al 2009 Chin. Phys. Lett. 26 060502
[17] Qian Z, Chen Z and Yuan Z 2008 Chin. Phys. Lett. 25 3169
[18] L\"{u J, Chen G and Cheng D 2004 Int. J. Bifur.Chaos 14 1507
[19] Qi G and Chen G 2006 Int. J. Bifur. Chaos 16859
[20] Li S, Alvarez G and Chen G 2005 Chaos, SolitonsFractals 25 109
[21] Al-Sawalha M M and Noorani M S M 2008 Chin. Phys.Lett. 25 2743
[22] Baghious E H and Jarry P 1993 Int. J. Bifur. Chaos 3 201
[23] Elwakil A S and Kennedy M P 2001 IEEE Trans.Circuits Syst. I 48 289
[24] Elwakil A S et al 2002 IEEE Trans. Circuits Syst. I 49 527
Related articles from Frontiers Journals
[1] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 090504
[2] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 090504
[3] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 090504
[4] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 090504
[5] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 090504
[6] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 090504
[7] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 090504
[8] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 090504
[9] ZHANG Ying-Qian, WANG Xing-Yuan** . A Parameter Modulation Chaotic Secure Communication Scheme with Channel Noises[J]. Chin. Phys. Lett., 2011, 28(2): 090504
[10] LI Hai-Yan**, HU Yun-An . Backstepping-Based Synchronization Control of Cross-Strict Feedback Hyper-Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(12): 090504
[11] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 090504
[12] SHANG Hui-Lin. Control of Fractal Erosion of Safe Basins in a Holmes–Duffing System via Delayed Position Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 090504
[13] DU Mao-Kang**, HE Bo, WANG Yong . Security Analysis of a Block Encryption Algorithm Based on Dynamic Sequences of Multiple Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(1): 090504
[14] XU Jie, LONG Ke-Ping, FOURNIER-PRUNARET Danièle, TAHA Abdel-Kaddous, CHARGE Pascal. Chaotic Dynamics in a Sine Square Map: High-Dimensional Case (N≥3)[J]. Chin. Phys. Lett., 2010, 27(8): 090504
[15] LU Xiao-Qing, Francis Austin, CHEN Shi-Hua. Cluster Consensus of Nonlinearly Coupled Multi-Agent Systems in Directed Graphs[J]. Chin. Phys. Lett., 2010, 27(5): 090504
Viewed
Full text


Abstract