Chin. Phys. Lett.  2009, Vol. 26 Issue (9): 090503    DOI: 10.1088/0256-307X/26/9/090503
GENERAL |
Stabilizing of Two-Dimensional Discrete Lorenz Chaotic System and Three-Dimensional Discrete Röossler Hyperchaotic System
LI Xin1, CHEN Yong2
1Department of Mathematics, Changshu Institute of Technology, Changshu 2155002Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062
Cite this article:   
LI Xin, CHEN Yong 2009 Chin. Phys. Lett. 26 090503
Download: PDF(504KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A method is used to stabilize the unstable discrete system: two-dimensional discrete Lorenz system and three-dimensional discrete Rössler system.
Keywords: 05.45.-a      05.45.Xt      05.45.Gg     
Received: 25 March 2009      Published: 28 August 2009
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Gg (Control of chaos, applications of chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/9/090503       OR      https://cpl.iphy.ac.cn/Y2009/V26/I9/090503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Xin
CHEN Yong
[1] Ott E, Grebogi C and York J A 1990 Phys. Rev. Lett. 64 1196
[2]Zhou C S and Chen T L 1996 Chin. Phys. Lett. 13 572
[3]Tan W and Wang Y N 2005 Chin. Phys. 14 72
[4]Chen G R and L\"u J H 2003 (Beijing: Science Press) (in Chinese)
[5]Peng B, Petro V and Showalter K 1991 J. Phys. Chem. 95 4957
[6]Wang J G and Zhao Y 2005 Chin. Phys. Lett. 22 2508
[7]Pyragas K 1992 Phys. Lett. A 170 421
[8]Abed F H, Wang H O and Chen R C 1994 Physica D 70 154
[9]Mirus K A and Sprott J C 1999 Phys. Rev. E 59 5313
[10]Guo L X, Xu Z Y and Hu M F 2008 Chin. Phys. B 17 4067
[11]Yang L, Liu Z and Mao J 2000 Phys. Rev. Lett. 84 67
[12]Bu S, Wang S and Ye H 2001 Phys. Rev. E 64 046209
[13]Lorenz E N 1963 J. Atmos. Sci. 20 130
[14]R\"ossler O E 1979 Phys. Lett. A 71 397
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 090503
[2] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 090503
[3] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 090503
[4] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 090503
[5] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 090503
[6] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 090503
[7] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 090503
[8] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 090503
[9] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 090503
[10] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 090503
[11] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 090503
[12] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 090503
[13] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 090503
[14] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 090503
[15] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 090503
Viewed
Full text


Abstract