Chin. Phys. Lett.  2009, Vol. 26 Issue (9): 090502    DOI: 10.1088/0256-307X/26/9/090502
GENERAL |
Functional Time Series Prediction Using Process Neural Network
DING Gang, LIN Lin, ZHONG Shi-Sheng
School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001
Cite this article:   
DING Gang, LIN Lin, ZHONG Shi-Sheng 2009 Chin. Phys. Lett. 26 090502
Download: PDF(281KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Time series prediction methods based on conventional neural networks do not take into account the functional relations between the discrete observed values in the time series. This usually causes a low prediction accuracy. To solve this problem, a functional time series prediction model based on a process neural network is proposed in this paper. A Levenberg-Marquardt learning algorithm based on the expansion of the orthonormal basis functions is developed to train the proposed functional time series prediction model. The efficiency of the proposed functional time series prediction model and the corresponding learning algorithm is verified by the prediction of the monthly mean sunspot numbers. The comparative test results indicate that process neural network is a promising tool for functional time series prediction.
Keywords: 05.45.Tp      02.70.Rr     
Received: 14 May 2009      Published: 28 August 2009
PACS:  05.45.Tp (Time series analysis)  
  02.70.Rr (General statistical methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/9/090502       OR      https://cpl.iphy.ac.cn/Y2009/V26/I9/090502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DING Gang
LIN Lin
ZHONG Shi-Sheng
[1] Podobnik B and Stanley H E 2008 Phys. Rev. Lett. 100 084102
[2] Scafetta N and West B J 2004 Phys. Rev. Lett. 92 138501
[3] Zhao L and Yang Y P 2009 Expert Syst. Appl. 36 2805
[4] Funahashi F 1989 Neural Networks 2 359
[5] Hornik K, Stinchcombe M and White H Neural Networks 2 183
[6] Eisenstein E, Kanter I, Kessler D A and Kinzel W 1995 Phys. Rev. Lett. 74 6
[7] Freking A, Kinzel W and Kanter I 2002 Phys. Rev. E 65 050903
[8] Kulkami D R, Parikh J C and Pratap R 1997 Phys.Rev. E 55 4508
[9] Ding G and Zhong S S 2006 Neural Network World16 15
[10] Ghazali R, Hussain A J, Liatsis P and Tawfik H 2008 Neural Comput. Appl. 17 311
[11] Glendinning R H and Fleet S L 2007 Signal Process. 87 79
[12] Antoniadis A, Paparoditis E and Sapatinas T 2009 Stat. Probab. Lett. 79 733
[13] Aneiros-Pereza G and Vieub P 2008 J. Multivar.Anal. 99 834
[14] Gatet L, Tap-Beteille H and Bony F 2009 IEEE Trans.Neu ral Networks 20 460
[15] Zhang L I, Tao H W, Holt C E, Harris W A and Poo M M 1998 Nature 395 37
[16] He X G and Liang J Z 2000 Chin. Engin. Sci. 240 (in Chinese)
[17] Hagan M T and Menhaj M 1994 IEEE Trans. NeuralNetworks 5 989
Related articles from Frontiers Journals
[1] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 090502
[2] KONG De-Ren, XIE Hong-Bo** . Assessment of Time Series Complexity Using Improved Approximate Entropy[J]. Chin. Phys. Lett., 2011, 28(9): 090502
[3] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 090502
[4] QU Jing-Yi**, WANG Ru-Bin, ZHANG Yuan, DU Ying . A Neurodynamical Model for Selective Visual Attention[J]. Chin. Phys. Lett., 2011, 28(10): 090502
[5] YANG Yue, HU Han-Ping, XIONG Wei, CHEN Jiang-Hang . Network Traffic Anomaly Detection Method Based on a Feature of Catastrophe Theory[J]. Chin. Phys. Lett., 2010, 27(6): 090502
[6] LI Jian-Kang, SONG Xiang-Rong, YIN Ke. Discrete Capability of the Lempel-Ziv Complexity Algorithm on a Vibration Sequence[J]. Chin. Phys. Lett., 2010, 27(6): 090502
[7] DU Ying, LU Qi-Shao. Noise Effects on Temperature Encoding of Neuronal Spike Trains in a Cold Receptor[J]. Chin. Phys. Lett., 2010, 27(2): 090502
[8] CAI Chao-Feng, ZHANG Ying-Ying, LIU Xue, LIANG Pei-Ji, ZHANG Pu-Ming. Detecting Determinism in Firing Activities of Retinal Ganglion Cells during Response to Complex Stimuli[J]. Chin. Phys. Lett., 2008, 25(5): 090502
[9] QIU Tian, CHEN Guang. Spread and Quote-Update Frequency of the Limit-Order Driven Sergei Maslov Model[J]. Chin. Phys. Lett., 2007, 24(8): 090502
[10] DING Liang-Jing, PENG Hu, CAI Shi-Min, ZHOU Pei-Ling. Multifractal Analysis of Human Heartbeat in Sleep[J]. Chin. Phys. Lett., 2007, 24(7): 090502
[11] MENG Qing-Fang, PENG Yu-Hua, LIU Yun-Xia, SUN Wei-Feng. Analyses of Optimal Embedding Dimension and Delay for Local Linear Prediction Model[J]. Chin. Phys. Lett., 2007, 24(7): 090502
[12] TANG Ying, PEI Wen-Jiang, XIA Hai-Shan, HE Zhen-Ya. Multiscale Entropy under the Inverse Gaussian Distribution: Analytical Results[J]. Chin. Phys. Lett., 2007, 24(6): 090502
[13] YANG Zheng-Ling, WANG Wei-Wei, YIN Zhen-Xing, ZHANG Jun, CHEN Xi. Differential System's Nonlinear Behaviour of Real Nonlinear Dynamical Systems[J]. Chin. Phys. Lett., 2007, 24(5): 090502
[14] FENG Jiu-Chao. A Noise Cleaning Method for Chaotic Time Series and Its Application in Communication[J]. Chin. Phys. Lett., 2005, 22(8): 090502
[15] LI Heng-Chao, ZHANG Jia-Shu. Local Prediction of Chaotic Time Series Based on Support Vector Machine[J]. Chin. Phys. Lett., 2005, 22(11): 090502
Viewed
Full text


Abstract