Chin. Phys. Lett.  2009, Vol. 26 Issue (9): 090305    DOI: 10.1088/0256-307X/26/9/090305
GENERAL |
Exact Solutions of Effective Mass Dirac Equation with Non-PT-Symmetric and Non-Hermitian Exponential-type Potentials
Altug Arda1, Ramazan Sever2
1Department of Physics Education, Hacettepe University, 06800, Ankara, Turkey2Department of Physics, Middle East Technical University, 06800, Ankara,Turkey
Cite this article:   
Altug Arda, Ramazan Sever 2009 Chin. Phys. Lett. 26 090305
Download: PDF(173KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By using a two-component approach to the one-dimensional effective mass Dirac equation, bound states are investigated under the effect of two new non-PT-symmetric and non-Hermitian exponential type potentials. It is observed that the Dirac equation can be mapped into a Schrödinger-like equation by rescaling one of the two Dirac wave functions in the case of the position-dependent mass. The energy levels and the corresponding Dirac eigenfunctions are found analytically.
Keywords: 03.65.-w      03.65.Ge      12.39.Fd     
Received: 18 May 2009      Published: 28 August 2009
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Ge (Solutions of wave equations: bound states)  
  12.39.Fd  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/9/090305       OR      https://cpl.iphy.ac.cn/Y2009/V26/I9/090305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Altug Arda
Ramazan Sever
[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[arXiv:physics/9712001].
[2] Fernandez F M, Guardiola R, Ros J and Znojil M 1998 J. Phys. A: Math. Gen. 31 10105
[3] Cannata F, Junker G and Trost J 1998 Phys. Lett. A 246 219
[arXiv:quant-ph/9805085].
[4] Bender C M, Boettcher S and Meisinger P 1999 J. Math.Phys. 40 2201
[arXiv:quant-ph/9809072]
[5] Bender C M, Dunne G V and Meisinger P 1999 Phys.Lett. A 252 272
[6] Khare A and Mandal B P 2000 Phys. Lett. A 27253
[arXiv:quant-ph/0006126]
[7] Znojil M, Cannata F, Bagchi B and Roychoudhury R 2000 Phys. Lett. B 483 284
[arXiv:hep-th/0003277]
[8] Mostafazadeh A 2002 J. Math. Phys. 43 205
[9] L\'{evai G and Znojil M 2000 J. Phys. A: Math. Gen. 33 7165
[10] Znojil M 2005 J. Math. Phys. 46 062109
[11] Bagchi B and Quesne C 2002 Phys. Lett. A 30018
[12] Jia C S, Zeng X L and Sun L T 2002 Phys. Lett. A 294 185
[13] Jia C S, Li S C, Li Y and Sun L T 2002 Phys. Lett.A 300 115
[14] Jia C S, Sun Y and Li Y 2002 Phys. Lett. A 305 231
[15] Jia C S, Yi L Z, Zhao X Q, Liu J Y and Sun L T 2005 Mod. Phys. Lett. A 20 1753
[16] Bender C M, Brody D C and Jones H F 2004 Phys. Rev.Lett. 93 251601
[17] Bender C M, Jones H F and Rivers R J 2005 Phys.Lett. B 625 333
[18] Bender C M, Brody D C, Chen J H, Jones H F, Milton K Aand Ogilvie M C 2006 Phys. Rev. D 74 025016
[19] Deb R N, Khare A and Roy B D 2003 Phys. Lett. A 307 215 Baye D, L\'{evai G and Sparenberg J M 1996 Nucl.Phys. A 599 435
[20] Ahmed Z 2000 Phys. Lett. A 273 343
[21] Huang F J, Qi R, Li Y D and Liu W M 2007 Europhys.Lett. 79 10004
[22] Fu Y P, Wang D, Li Y D and Liu W M 2007 J. Phys.:Cond. Matt. 19 496220
[23] Jiang Z F, Li R D, Zhang S C and Liu W M 2005 Phys.Rev. B 72 045201
[24] Sheng C T, Feng L H, Jie M, Quan Z S and Gui Z S 2003 Chin. Phys. Lett. 20 358
[25] You G J, Jie M and Xin X F 2003 Chin. Phys. Lett. 20 602
[26] Jia C S, Wang P Q, Liu J Y and He S 2007 Int. J.Theor. Phys. doi: 10.1007/s10773-008-9685-2
[27] Jiang L, Yi L Z and Jia C S 2005 Phys. Lett. A 345 279
[28] Jia C S, Yi L Z and Sun Y 2008 J. Math. Chem. 43 435
[29] Bagchi B, Quesne C and Roychoudhury R 2005 J. Phys.A 38 L647
[30] Roy B and Roy P 2005 J. Phys. A 38 11019
[31] Mustafa O and Mazharimousavi S H 2007 Int. J. Theor.Phys. doi: 10.1007/s10773-007-9470-7
[32] Tezcan C and Sever R 2007 Int. J. Theor. Phys. doi:10.1007/s10773-007-9589-6
[33] Jia C S and Dutra A S 2006 Int. J. Theor. Phys. 39 11877
[34] Mustafa O and Mazharimousavi S H 2007 J. Phys. A 40 863
[35] Jia C S, Liu J Y, Wong P Q and Che C S 2007 Phys.Lett. A 369 274
[36] Jia C S and Dutra A S 2007 Ann. Phys.doi:10.1016/j. aop.2007.04.007
[37] Serra L and Lipparini E 1997 Europhys. Lett. 40 667
[38] Von Roos O 1983 Phys. Rev. B 27 7547
[39] de Saavedra F A, Boronat J, Polls A and Fabrocini A 1994 Phys. Rev. B 50 4248
[40] Kennedy P 2005 J. Phys. A 35 689
[arXiv:hep-th/ 0107170]
[41] Fl\"uge S 1971 Practical Quantum Mechanics I$\!$I(Berlin: Springer)
[42] Nikiforov A F and Uvarov V B 1988 Special Functionsof Mathematical Physics (Basel: Birkhauser)
[43] de Castro A S and Hott M 2007 Phys. Lett. A 342 53
[44] Wong C W 1991 Introduction to MathematicalPhysics-Methods and Concepts (Oxford: Oxford University)
[45] Costa L C, Prudenter F V, Acioli P H, Neto J J S andVianna J D M 1990 J. Phys. B 32 2461
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 090305
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 090305
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 090305
[4] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 090305
[5] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 090305
[6] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 090305
[7] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 090305
[8] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 090305
[9] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 090305
[10] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 090305
[11] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 090305
[12] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 090305
[13] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 090305
[14] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 090305
[15] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 090305
Viewed
Full text


Abstract