GENERAL |
|
|
|
|
Multi-Soliton Solutions of the Levi Equations |
YOU Fu-Cai1, ZHANG Jiao1,2, HAO Hong-Hai3 |
1Department of Basic Sciences, Shenyang Institute of Engineering, Shenyang 1101362College of Science, Liaoning University of Petroleum and Chemical Technology, Fushun 1130013Department of Mathematics, Shanghai University, Shanghai 200444 |
|
Cite this article: |
YOU Fu-Cai, ZHANG Jiao, HAO Hong-Hai 2009 Chin. Phys. Lett. 26 090201 |
|
|
Abstract The multisoliton solutions of the Levi equations are derived with the Hirota method and Wronskian technique respectively.
|
Keywords:
02.30.Ik
02.30.Jr
05.45.Yv
|
|
Received: 30 April 2009
Published: 28 August 2009
|
|
|
|
|
|
[1] Ablowitz M J and Segur H 1981 Solitons and theInverse Scattering Transform (Philadelphia, PA: SIAM) [2] Nimmo J J C 1983 Phys. Lett. A 99 279 [3] Matveev V B and Salle M A 1991 DarbouxTransformations and Solitons (Berlin: Springer) [4] Hirota R 2004 The Direct Method in Soliton Theory(Cambridge: Cambridge University) [5] Freeman N C et al 1983 Proc. R. Soc. Lond. A 389 319 [6] Freeman N C and Nimmo J J C 1983 Phys. Lett. A 95 123 [7] Freeman N C and Nimmo J J C 1983 Phys. Lett. A 95 1 [8] Xu X X et al 2008 Chin. Phys. Lett. 25 3890 [9] Deng S F 2006 Chin. Phys. Lett. 23 1662 [10] Zhang D J and Chen D Y 2004 J. Phys. A 37 851 [11] Hao H H et al 2005 Chin. Phys. Lett. 22 2987 [12] Hu X B and Wang H Y 2006 Inverse Problems 221903 [13] Su T et al 2007 Chin. Phys. Lett. 24 305 [14] Sirianunpiboon S et al 1988 Phys. Lett. A 13431 [15] Matveev V B 1992 Phys. Lett. A 166 205 [16] Ma W X et al 2005 Trans. Amer. Math. Soc. 3571753 [17] Chen D Y, Zhang D J and Bi J B 2008 Sci. Chin. A 51 55 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|