CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Magnetization Reversal Mechanism for CoFeB Ferromagnetic Nanotube Arrays |
LIU Hai-Rui1,2, S. Shamaila2, CHEN Jun-Yang2, R. Sharif2, LU Qing-Feng1, HAN Xiu-Feng2 |
1College of Physics and Information Engineering, Henan Normal University, Xinxiang 4530072State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 |
|
Cite this article: |
LIU Hai-Rui, S. Shamaila, CHEN Jun-Yang et al 2009 Chin. Phys. Lett. 26 077503 |
|
|
Abstract CoFeB nanotube arrays are fabricated in anodic aluminum oxide (AAO) membranes and track etched polycarbonate (PCTE) membranes by using an electrochemical method, and their magnetic properties are investigated by vibrating sample magnetometry. The coercivity Hc and remanent squareness SQ of these CoFeB nanotube arrays are derived from hysteresis loops as a function of angle between the field and tube axis. The Hc(θ) curves for CoFeB nanotube arrays in AAO and PCTE membranes show M-type variation, while they change shape from M to mountain-type as the tube length increases. However, the overall easy axis perpendicular to tube axis does not change with tube length. The different angular dependences are attributed to different magnetization reversal mechanisms.
|
Keywords:
75.50.Cc
75.60.-d
|
|
Received: 02 April 2009
Published: 02 July 2009
|
|
PACS: |
75.50.Cc
|
(Other ferromagnetic metals and alloys)
|
|
75.60.-d
|
(Domain effects, magnetization curves, and hysteresis)
|
|
|
|
|
[1] Iijima S 1991 Nature 354 56 [2] Daub M, Knez M, G\"{osele U and Nielsch K 2007 J.Appl. Phys. 101 09J111 [3] Wang T, Wang Y, Li F Sh, Xu Ch T and Zhou D 2006 J.Phys.: Condens Matter 18 10545 [4] Son S J, Reichel J, He B, Schushman M and Lee S B 2005 J. Am. Chem. Soc. 127 7316 [5] Nielsch K, Casta\~{no F J, Matthias S, Lee W and Ross C A2005 Adv. Eng. Mater. 7 217 [6] Wang Z K, Lim H S, Liu H Y et al 2005 Phys. Rev.Lett. 94 137208 [7] Cai Q, Zhang J X, Chen X, Chen Zh J, Wang W, Mo G, Wu ZhH, Zhang L D and Pan W 2008 J. Phys.: Condens. Matter 20115205 [8] Eisenstein M 2005 Nature Methods 2 484 [9] Salem A K, Searson P C and Leong K W 2003 NatureMater. 2 668 [10] Escrig J, Landeros P, Altbir D, Vogel E E and Vargas P2007 J. Magn. Magn. Mater. 308 233 [11] Varga R, Garcia K L, V\'{azquez M and Vojtanik P 2005 Phys. Rev. Lett. 94 017201 [12] Skomski R 2003 J. Phys.: Condens. Matter 15R841 [13] Forster H, Schrefl T, Suess D, Scholz W, Tsiantos V,Dittrich R and Fidler J 2002 J. Appl. Phys. 91 6914 [14] Wieser R, Nowak U and Usadel K D 2004 Phys. Rev. B 69 064401 [15] Oliveira A B, Rezende S M and Azevedo A 2008 Phys.Rev. B 78 024423 [16] Han G C, Zong B Y, Luo P and Wu Y H 2003 J. Appl.Phys. 93 9202 [17] Landeros P, Allende S, Escrig J, Salcedo E, Altbir D andVogel E E 2007 Appl. Phys. Lett. 90 102501 [18] Escrig J, Bachmann J, Jing J, Daub M, Altbir D andNielsch K 2008 Phys. Rev. B 77 214421 [19] Shamaila S, Sharif R, Riaz S, Ma M, Khaleeq-ur-Rahman Mand Han X F 2008 J. Magn. Magn. Mater. 320 1803 [20] Sharif R, Shamaila S, Ma M, Yao L D, Yu R C, Han X F andKhaleeq-ur-Rahman M 2008 Appl. Phys. Lett. 92 032505 [21] Shamaila S, Liu D P, Sharif R, Chen J Y, Liu H R andHan X F 2009 Appl. Phys. Lett. 94 203101 [22] Escrig J, Daub M, Landeros P, Nielsch K and Altbir D2007 Nanotechnology 18 445706 [23] Hertel R 2001 J. Appl. Phys. 90 5752 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|