Chin. Phys. Lett.  2009, Vol. 26 Issue (7): 074704    DOI: 10.1088/0256-307X/26/7/074704
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
A Weakly Nonlinear Model for Kelvin-Helmholtz Instability in Incompressible Fluids
WANG Li-Feng1,4, YE Wen-Hua1,2,3, FAN Zheng-Feng1, XUE Chuang1, LI Ying-Jun4
1Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 1000882Center for Applied Physics and Technology, Peking University, Beijing 1008713Department of Physics, Zhejiang University, Hangzhou 3100284China University of Mining and Technology, Beijing 100083
Cite this article:   
WANG Li-Feng, YE Wen-Hua, FAN Zheng-Feng et al  2009 Chin. Phys. Lett. 26 074704
Download: PDF(393KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A weakly nonlinear model is proposed for the Kelvin-Helmholtz instability in two-dimensional incompressible fluids by expanding the perturbation velocity potential to third order. The third-order harmonic generation effects of single-mode perturbation are analyzed, as well as the nonlinear correction to the exponential growth of the fundamental modulation. The weakly nonlinear results are supported by numerical simulations. Density and resonance effects exist in the development of mode coupling.
Keywords: 47.20.Ft      52.35.Py      52.57.Fg     
Received: 19 February 2009      Published: 02 July 2009
PACS:  47.20.Ft (Instability of shear flows (e.g., Kelvin-Helmholtz))  
  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
  52.57.Fg (Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/7/074704       OR      https://cpl.iphy.ac.cn/Y2009/V26/I7/074704
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Li-Feng
YE Wen-Hua
FAN Zheng-Feng
XUE Chuang
LI Ying-Jun
[1] Chandrasekhar S 1961 Hydrodynamic and HydromagneticStability (London: Oxford University) chap 10
[2] Remington B A, Arnett D, Drake R P and Takabe H 1999 Science 284 1488
[3] Ye W H, Zhang W Y and He X T 2002 Phys. Rev. E 65 57401
[4] Fan Z F, Luo J S and Ye W H 2007 Chin. Phys. Lett. 24 2308
[5] Fan Z F and Luo J S 2008 Chin. Phys. Lett. 25624
[6] Remington B A, Drake R P and Ryutov D D 2006 Rev.Mod. Phys. 78 755
[7] Walker J S 1993 Phys. Fluids A 5 1466
[8] Bau H H 1982 Phys. Fluids 25 1719
[9] Wang L F, Ye W H, Fan Z F and Li Y J 2009 Chin. Phys.Lett. 26 014701
[10] Wang L F, Ye W H and Li Y J 2008 Acta Phys. Sin. 57 3038 (in Chinese)
[11] Wang L F, Ye W H, Li Y J and Meng L M 2008 Chin.Phys. B 17 3792
[12] Garnier J 2003 Phys. Rev. Lett. 90 185003
[13] Landau L D and Lifshitz E M 1959 Fluid Mechanics(Oxford: Pergamon)
[14] Ye W H, Zhang W Y and He X T 2000 Acta Phys. Sin. 49 762 (in Chinese)
[15] Ye W H et al 1998 Chin. J. Comput. Phys. 15276 (in Chinese)
[16] Ye W H, Zhang W Y and Chen G N 1998 High Power Laserand Particle Bleams 10 403 (in Chinese)
Related articles from Frontiers Journals
[1] YANG Wu-Bing*,SHEN Qing,WANG Qiang. Collective Interaction of Vortices in Two-Dimensional Shear Layers[J]. Chin. Phys. Lett., 2012, 29(5): 074704
[2] CHEN Shao-Yong, WANG Zhong-Tian, TANG Chang-Jian. Excitation of Internal Kink Mode by Circulating Supra-thermal Electrons[J]. Chin. Phys. Lett., 2012, 29(2): 074704
[3] XU Tao**, HU Qi-Ming, HU Xi-Wei, YU Qing-Quan . Locking of Tearing Modes by the Error Field[J]. Chin. Phys. Lett., 2011, 28(9): 074704
[4] HE Yong**, HU Xi-Wei, JIANG Zhong-He . Similar Rayleigh–Taylor Instability of Shock Fronts Perturbed by Corrugated Interfaces[J]. Chin. Phys. Lett., 2011, 28(5): 074704
[5] JI Xiao-Quan, YANG Qing-Wei, LIU Yi, ZHOU Jun, FENG Bei-Bin, YUAN Bao-Shan. First Observation of Neoclassical Tearing Modes in the HL-2A Tokamak[J]. Chin. Phys. Lett., 2010, 27(6): 074704
[6] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers[J]. Chin. Phys. Lett., 2010, 27(2): 074704
[7] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Numerical Simulation of Anisotropic Preheating Ablative Rayleigh-Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(2): 074704
[8] G. A. Hoshoudy . Quantum Effects on Rayleigh–Taylor Instability of Incompressible Plasma in a Vertical Magnetic Field[J]. Chin. Phys. Lett., 2010, 27(12): 074704
[9] YE Wen-Hua, **, WANG Li-Feng, , HE Xian-Tu, . Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh–Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(12): 074704
[10] WANG Li-Feng, YE Wen-Hua, , FAN Zheng-Feng, LI Ying-Jun. Multimode Coupling Theory for Kelvin-Helmholtz Instability in Incompressible Fluid[J]. Chin. Phys. Lett., 2009, 26(1): 074704
[11] HAN Jian, JIANG Nan .. Wavelet Cross-Spectrum Analysis of Multi-Scale Disturbance Instability and Transition on Sharp Cone Hypersonic Boundary Layer[J]. Chin. Phys. Lett., 2008, 25(5): 074704
[12] FAN Zheng-Feng, LUO Ji-Sheng. Weak Nonlinearity of Ablative Rayleigh--Taylor Instability[J]. Chin. Phys. Lett., 2008, 25(2): 074704
[13] REN Ling, CHEN Jian-Guo, ZHU Ke-Qin. Dual Role of Wall Slip on Linear Stability of Plane Poiseuille Flow[J]. Chin. Phys. Lett., 2008, 25(2): 074704
[14] CHEN Wei, DING Xuan-Tong, LIU Yi, YUAN Guo-Liang, ZHANG Yi-Po, DONG Yun-Bo, SONG Xian-Ying, ZHOU Jun, SONG Xian-Ming, DENG Wei, YANG Qing-Wei. Observation of Fishbone-Like Instabilities Excited by Energetic Electrons on the HL-2A Tokamak[J]. Chin. Phys. Lett., 2008, 25(10): 074704
[15] FAN Zheng-Feng, LUO Ji-Sheng, YE Wen-Hua. Compressible Rayleigh--Taylor Instability with Preheat in Inertial Confinement Fusion[J]. Chin. Phys. Lett., 2007, 24(8): 074704
Viewed
Full text


Abstract