Chin. Phys. Lett.  2009, Vol. 26 Issue (7): 074703    DOI: 10.1088/0256-307X/26/7/074703
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Vortex Turbulence due to the Interplay of Filament Tension and Rotational Anisotropy
JIANG Mi, MA Ping
State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871
Cite this article:   
JIANG Mi, MA Ping 2009 Chin. Phys. Lett. 26 074703
Download: PDF(273KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The mechanism of scroll wave turbulence is investigated in excitable media with rotational anisotropy. We adopt the Barkley model with heterogeneity in the diffusion constants. Through comparative numerical studies, we demonstrate the vortex turbulence results from the rotational anisotropy's cooperation with negative filament tension or competition with positive filament tension. The presence of rotational anisotropy can enlarge the parameter region leading to negative-tension induced wave turbulence in isotropic media.
Keywords: 47.27.-i      47.54.-r      87.19.Hh     
Received: 07 April 2009      Published: 02 July 2009
PACS:  47.27.-i (Turbulent flows)  
  47.54.-r (Pattern selection; pattern formation)  
  87.19.Hh (Cardiac dynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/7/074703       OR      https://cpl.iphy.ac.cn/Y2009/V26/I7/074703
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIANG Mi
MA Ping
[1] Luengviriya C, Storb U, Lindner G, Muller S C, Bar M andHauser M J B 2008 Phys. Rev. Lett. 100 148302
[2] Witkowski F X, Leon L J, Penkoske P A, Giles W R, Spano ML, Ditto W L and Winfree A T 1998 Nature 392 78
[3] Tusscher T and Panfilov A V 2004 Phys. Rev. Lett. 93 108106
[4] Wellner M, Berenfeld O, Jalife J and Pertsov A M 2002 Proc. Natl. Acad. Sci. U.S.A. 99 8015
[5] Verschelde H, Dierckx H and Bernus O 2007 Phys. Rev.Lett. 99 168104
[6] Thomas T 1957 Am. J. Anat. 101 17
[7] Nielsen P, Grice I L and Smaill B 1991 Am. J.Physiol. 260 H1365
[8] Peskin C 1989 Commun. Pure Appl. Math. 42 79
[9] Hwang S, Kim T Y and Lee K J 2005 Proc. Natl. Acad.Sci. U.S.A. 102 10363
[10] Arevalo H, Rodriguez B and Trayanova N 2007 Chaos 17 015103
[11] Mackenzie D 2004 Science. 303 786
[12] Fenton F and Karma A 1998 Chaos 8 20 Fenton F and Karma A 1998 Phys. Rev. Lett. 81481
[13] Biktashev V N, Holden A V, Zhang H 1994 Phil. Trans.R. Soc. London A 347 611
[14] Alonso S, Sagues F, Mikhailov A S 2003 Science 299 1722 Alonso S, Sagues F, Mikhailov A S 2004 Phys. Rev. E 70 056201 Alonso S, Sagues F, Mikhailov A S 2006 Chaos 16023124
[15] Zhang H, Cao Z, Wu N J, Ying H P and Hu G 2005 Phys.Rev. Lett. 94 188301
[16] Wellner M, Berenfeld O and Pertsov A M 2000 Phys.Rev. E 61 1845
[17] Panfilov A V and Keener J P 1995 Physica D 84545
[18] Rappel W J 2001 Chaos 11 71
[19] Henry H and Hakim V 2000 Phys. Rev. Lett. 85255328
[20] Aranson I and Mitkov I 1998 Phys. Rev. E 584556
[21] Barkley D, Kness M and Tuckerman L S 1990 Phys.Rev. A 42 2489
[22] Alonso S and Panfilov A V 2008 Phys. Rev. Lett. 100 218101
Related articles from Frontiers Journals
[1] GU Guo-Feng,WEI Hai-Ming,TANG Guo-Ning**. Wave Optics in Discrete Excitable Media[J]. Chin. Phys. Lett., 2012, 29(5): 074703
[2] OUYANG Ji-Ting, DUAN Xiao-Xi, XU Shao-Wei, HE Feng. The Key Factor for Uniform and Patterned Glow Dielectric Barrier Discharge[J]. Chin. Phys. Lett., 2012, 29(2): 074703
[3] ZHANG Hui-Qiang, LU Hao, WANG Bing**, WANG Xi-Lin . Experimental Investigation of Flow Drag and Turbulence Intensity of a Channel Flow with Rough Walls[J]. Chin. Phys. Lett., 2011, 28(8): 074703
[4] LUO Jian-Ping, LU Zhi-Ming, USHIJIMA Tatsuo, KITOH Osami, LIU Yu-Lu,. Lagrangian Structure Function's Scaling Exponents in Turbulent Channel Flow[J]. Chin. Phys. Lett., 2010, 27(2): 074703
[5] MI Jian-Chun, R. A. Antonia. Key Factors in Determining the Magnitude of Vorticity in Turbulent Plane Wakes[J]. Chin. Phys. Lett., 2010, 27(2): 074703
[6] YUAN Xu-Jin, SHAO Xin, LIAO Hui-Min, OUYANG Qi. Pattern Formation in the Turing-Hopf Codimension-2 Phase Space in a Reaction-Diffusion System[J]. Chin. Phys. Lett., 2009, 26(2): 074703
[7] ZHANG Ning, ZHANG Hui-Min, LIU Zhi-Qiang, DING Xue-Li, YANG Ming-Hao, GUHua-Guang, REN Wei. Stochastic Alternating Dynamics for Synchronous EAD-Like Beating Rhythms in Cultured Cardiac Myocytes[J]. Chin. Phys. Lett., 2009, 26(11): 074703
[8] CAO Yu-Hui, PEI Jie, CHEN Jun, SHE Zhen-Su,. Compressibility Effects in Turbulent Boundary Layers[J]. Chin. Phys. Lett., 2008, 25(9): 074703
[9] YU Lian-Chun, MA Jun, ZHANG Guo-Yong, CHEN Yong,. Suppression of Spiral Waves by Voltage Clamp Techniques in a Conductance-Based Cardiac Tissue Model[J]. Chin. Phys. Lett., 2008, 25(7): 074703
[10] MA Wen-Jie, WANG Yu-Ren, LAN Ding. Role of Convection Flow on the Pattern Formation in the Drying Process of Colloidal Suspension[J]. Chin. Phys. Lett., 2008, 25(4): 074703
[11] REN Ji-Rong, ZHU Tao, DUAN Yi-Shi. Topological Aspect of Knotted Vortex Filaments in Excitable Media[J]. Chin. Phys. Lett., 2008, 25(2): 074703
[12] FENG Shi-De, DONG Ping, ZHONG Lin-Hao. A Conceptual Model of Somali Jet Based on the Biot--Savart Law[J]. Chin. Phys. Lett., 2008, 25(12): 074703
[13] MA Jun, JIA Ya, TANG Jun, YANG Li-Jian. Breakup of Spiral Waves in Coupled Hindmarsh--Rose Neurons[J]. Chin. Phys. Lett., 2008, 25(12): 074703
[14] LI Bing-Wei, SUN Li-Li, CHEN Bin, YING He-Ping. Controlling Spiral Dynamics in Excitable Media by a Weakly Localized Pacing[J]. Chin. Phys. Lett., 2007, 24(8): 074703
[15] DING Liang-Jing, PENG Hu, CAI Shi-Min, ZHOU Pei-Ling. Multifractal Analysis of Human Heartbeat in Sleep[J]. Chin. Phys. Lett., 2007, 24(7): 074703
Viewed
Full text


Abstract