Chin. Phys. Lett.  2009, Vol. 26 Issue (7): 070307    DOI: 10.1088/0256-307X/26/7/070307
GENERAL |
Generalized Coherent States of a Particle in a Time-Dependent Linear Potential
L. Krache1, M. Maamache1, Y. Saadi1, A. Beniaiche2
1Lab PQSD, Faculté des Sciences, Université Ferhat Abbas de Sétif, Sétif 19000, Algeria2Lab SPONL, Faculté des Sciences de l'Ingénieur, Université Ferhat Abbas de Sétif, Sétif 19000, Algeria
Cite this article:   
L. Krache, M. Maamache, Y. Saadi et al  2009 Chin. Phys. Lett. 26 070307
Download: PDF(192KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We derive, with an invariant operator method and unitary transformation approach, that the Schrödinger equation with a time-dependent linear potential possesses an infinite string of shape-preseving wave-packet states |φα,λ>(t)> having classical motion. The qualitative properties of the invariant eigenvalue spectrum (discrete or continuous) are described separately for the different values of the frequency ω of a harmonic oscillator. It is also shown that, for a discrete eigenvalue spectrum, the states |φα,n>(t)> could be obtained from the coherent state |φα,0>(t).
Keywords: 03.65.Ge      03.65.Fd     
Received: 22 April 2009      Published: 02 July 2009
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.Fd (Algebraic methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/7/070307       OR      https://cpl.iphy.ac.cn/Y2009/V26/I7/070307
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
L. Krache
M. Maamache
Y. Saadi
A. Beniaiche
[1] Rau A and Unnikrishnan K 1999 Phys. Lett. A 222 304
[2] Guedes I 2001 Phys. Rev. A 63 034102
[3] Feng M 2001 Phys. Rev. A 64 034101
[4] Bauer J 2002 Phys. Rev. A 65 036101
[5] Bekkar H et al 2003 Phys. Rev. A 68 016101
[6] Luan P G and Tang C S 2005 Phys. Rev. A 71014101
[7] Dunkel J and Trigger S A 2005 Phys. Rev. A 71052102
[8] Bowman G E 2006 J. Phys. A 39 157
[9] Kim S P 2006 J. Korean Phys. Soc. 44 464
[10] Lu G B et al 2006 Phys. Lett. A 357 181
[11] Lewis H R Jr et al 1969 J. Math. Phys. 101458
[12] Schrodinger E 1926 Naturwiss 14 664
[13] Glauber R J 1963 Phys. Rev. 130 2529
[14] Klauder J R 1960 Ann. Phys. (N. Y.) 11 123 Klauder J R 1963 J. Math. Phys. 4 1055 Klauder J R 1963 J. Math. Phys. 4 1058
[15] Sudarshan E C G 1963 Phys. Rev. Lett. 10 227
[16] Klauder J R and Sudarshan E C G 1968 Fundamentals ofQuantum Optics (New York: Benjamin)
[17] Senitzky R 1954 Phys. Rev. 95 1115
[18] Plebanski J 1956 Phys. Rev. 101 1825 Plebanski J 1954 Bull. Acad. Polon. 11 213 Plebanski J 1955 Bull. Acad. Polon. 14 275
[19] Husimi K 1953 Prog. Theor. Phys. 9 381
[20] Epstein S T 1959 Am. J. Phys. 27 291
[21] Nieto M M 1997 Phys. Lett. A 229 135
[22] Roy S M and Singh V 1982 Phys. Rev. D 25 3413
[23] Satyanarayana M V 1985 Phys. Rev. D 32 3400
[24] Maamache M and Saadi Y 2008 arXiv:0804 4289v1
[25] Barton G 1986 Ann. Phys. (N. Y.) 166 322
[26] Pedrosa I A et al 2004 Int. J. Mod. Phys. B 18 1379
[27] Abramowitz M and Stegun I A 1970 HandbookMathematical Functions (New York: Dover) sec 19
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 070307
[2] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 070307
[3] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 070307
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 070307
[5] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 070307
[6] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 070307
[7] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 070307
[8] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 070307
[9] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 070307
[10] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 070307
[11] LIN Bing-Sheng**, HENG Tai-Hua . Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. Chin. Phys. Lett., 2011, 28(7): 070307
[12] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 070307
[13] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 070307
[14] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 070307
[15] ZHA Xin-Wei**, MA Gang-Long . Classification of Four-Qubit States by Means of a Stochastic Local Operation and the Classical Communication Invariant[J]. Chin. Phys. Lett., 2011, 28(2): 070307
Viewed
Full text


Abstract