GENERAL |
|
|
|
|
Generalized Coherent States of a Particle in a Time-Dependent Linear Potential |
L. Krache1, M. Maamache1, Y. Saadi1, A. Beniaiche2 |
1Lab PQSD, Faculté des Sciences, Université Ferhat Abbas de Sétif, Sétif 19000, Algeria2Lab SPONL, Faculté des Sciences de l'Ingénieur, Université Ferhat Abbas de Sétif, Sétif 19000, Algeria |
|
Cite this article: |
L. Krache, M. Maamache, Y. Saadi et al 2009 Chin. Phys. Lett. 26 070307 |
|
|
Abstract We derive, with an invariant operator method and unitary transformation approach, that the Schrödinger equation with a time-dependent linear potential possesses an infinite string of shape-preseving wave-packet states |φα,λ>(t)> having classical motion. The qualitative properties of the invariant eigenvalue spectrum (discrete or continuous) are described separately for the different values of the frequency ω of a harmonic oscillator. It is also shown that, for a discrete eigenvalue spectrum, the states |φα,n>(t)> could be obtained from the coherent state |φα,0>(t).
|
Keywords:
03.65.Ge
03.65.Fd
|
|
Received: 22 April 2009
Published: 02 July 2009
|
|
PACS: |
03.65.Ge
|
(Solutions of wave equations: bound states)
|
|
03.65.Fd
|
(Algebraic methods)
|
|
|
|
|
[1] Rau A and Unnikrishnan K 1999 Phys. Lett. A 222 304 [2] Guedes I 2001 Phys. Rev. A 63 034102 [3] Feng M 2001 Phys. Rev. A 64 034101 [4] Bauer J 2002 Phys. Rev. A 65 036101 [5] Bekkar H et al 2003 Phys. Rev. A 68 016101 [6] Luan P G and Tang C S 2005 Phys. Rev. A 71014101 [7] Dunkel J and Trigger S A 2005 Phys. Rev. A 71052102 [8] Bowman G E 2006 J. Phys. A 39 157 [9] Kim S P 2006 J. Korean Phys. Soc. 44 464 [10] Lu G B et al 2006 Phys. Lett. A 357 181 [11] Lewis H R Jr et al 1969 J. Math. Phys. 101458 [12] Schrodinger E 1926 Naturwiss 14 664 [13] Glauber R J 1963 Phys. Rev. 130 2529 [14] Klauder J R 1960 Ann. Phys. (N. Y.) 11 123 Klauder J R 1963 J. Math. Phys. 4 1055 Klauder J R 1963 J. Math. Phys. 4 1058 [15] Sudarshan E C G 1963 Phys. Rev. Lett. 10 227 [16] Klauder J R and Sudarshan E C G 1968 Fundamentals ofQuantum Optics (New York: Benjamin) [17] Senitzky R 1954 Phys. Rev. 95 1115 [18] Plebanski J 1956 Phys. Rev. 101 1825 Plebanski J 1954 Bull. Acad. Polon. 11 213 Plebanski J 1955 Bull. Acad. Polon. 14 275 [19] Husimi K 1953 Prog. Theor. Phys. 9 381 [20] Epstein S T 1959 Am. J. Phys. 27 291 [21] Nieto M M 1997 Phys. Lett. A 229 135 [22] Roy S M and Singh V 1982 Phys. Rev. D 25 3413 [23] Satyanarayana M V 1985 Phys. Rev. D 32 3400 [24] Maamache M and Saadi Y 2008 arXiv:0804 4289v1 [25] Barton G 1986 Ann. Phys. (N. Y.) 166 322 [26] Pedrosa I A et al 2004 Int. J. Mod. Phys. B 18 1379 [27] Abramowitz M and Stegun I A 1970 HandbookMathematical Functions (New York: Dover) sec 19 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|