Chin. Phys. Lett.  2009, Vol. 26 Issue (7): 070306    DOI: 10.1088/0256-307X/26/7/070306
GENERAL |
Probabilistic Controlled Teleportation of a Triplet W State with Combined Channel of Non-Maximally Entangled Einstein-Podolsky-Rosen and Greenberger-Horne-Zeilinger States
DONG Jian, TENG Jian-Fu
School of Electronic Information Engineering, Tianjin University, Tianjin 300072
Cite this article:   
DONG Jian, TENG Jian-Fu 2009 Chin. Phys. Lett. 26 070306
Download: PDF(192KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A scheme for probabilistic controlled teleportation of a triplet W state using combined non-maximally entangled channel of two Einstein-Podolsky-Rosen (EPR) states and one Greenberger-Horne-Zeilinger (GHZ) state is proposed. In this scheme, an (m+2)-qubit GHZ state serves not only as the control parameter but also as the quantum channel. The m control qubits are shared by m supervisors. With the aid of local operations and individual measurements, including Bell-state measurement, Von Neumann measurement, and mutual classical communication etc., Bob can faithfully reconstruct the original state by performing relevant unitary transformations. The total probability of successful teleportation is only dependent on channel coefficients of EPR states and GHZ, independent of the number of supervisor m. This protocol can also be extended to probabilistic controlled teleportation of an arbitrary N-qubit state using combined non-maximally entangled channel of N-1 EPR states and one (m+2)-qubit GHZ.
Keywords: 03.67.-a      03.67.Hk      03.65.Ud     
Received: 19 December 2008      Published: 02 July 2009
PACS:  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/7/070306       OR      https://cpl.iphy.ac.cn/Y2009/V26/I7/070306
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DONG Jian
TENG Jian-Fu
[1] Bennett C H, Brassard G and Cr\'{epeau C 1993 Phys.Rev. Lett. 70 1895
[2] Karlsson A and Bourennane M 1999 Phys. Rev. A 58 4394
[3] Zheng S B 2006 Chin. Phys. Lett. 23 2356
[4] Zhang Y Q 2006 Chin. Phys. 15 2252
[5] Zhang Z J 2006 Phys. Lett. A 55 352
[6] Deng F G, Li C Y and Li Y S 2005 Phys. Rev. A 72 022338
[7] Dong J and Teng J F 2008 Eur. Phys. J. D 49129
[8] Zhan X G, Li H M and Zeng H S 2006 Chin. Phys. Lett. 23 2900
[9] Li X H, Deng F G and Zhou H Y 2007 Chin. Phys. Lett. 24 1151
[10] Pati A K and Agrawal P 2004 J. Opt. B: QuantumSemiclass. Opt. 6 S844
[11] Gordon G and Rigolin G 2006 Phys. Rev. A 73042309
[12] Agrawal P and Pati A K 2002 Phys. Lett. A 30512
[13] Pati A K and Agrawal P 2007 Phys. Lett. A 371185
[14] Man Z X, Xia Y J and An N B 2007 Eur. Phys. J. D 42 333
[15] Yang C P 2004 Phys. Rev. A 70 022329
[16] Jiang W X 2007 Chin. Phys. Lett. 24 1144
[17] Li X H 2006 Phys. Rev. A 74 054302
[18] Deng F G 2006 Eur. Phys. J. D 39 459
[19] Fang J X 2003 Phys. Rev. A 67 014305
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 070306
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 070306
[3] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 070306
[4] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 070306
[5] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 070306
[6] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 070306
[7] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 070306
[8] QIAN Yi,XU Jing-Bo**. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field[J]. Chin. Phys. Lett., 2012, 29(4): 070306
[9] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 070306
[10] Arpita Maitra, Santanu Sarkar. On Universality of Quantum Fourier Transform[J]. Chin. Phys. Lett., 2012, 29(3): 070306
[11] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 070306
[12] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 070306
[13] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 070306
[14] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 070306
[15] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 070306
Viewed
Full text


Abstract