Chin. Phys. Lett.  2009, Vol. 26 Issue (6): 067802    DOI: 10.1088/0256-307X/26/6/067802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Resonant Modes of L-Shaped Gold Nanoparticles
YANG Jing, ZHANG Jia-Sen, WU Xiao-Fei, GONG Qi-Huang
State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871
Cite this article:   
YANG Jing, ZHANG Jia-Sen, WU Xiao-Fei et al  2009 Chin. Phys. Lett. 26 067802
Download: PDF(418KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We analyze the electric field modes excited in resonant L-shaped gold nanoparticles using a finite-difference time domain method. Compared to a single gold nanorod, both the odd and even modes of the L-shaped nanoparticles can be excited due to the symmetry breaking. The nanoparticles with equal and unequal arms have different dependence of field enhancement and mode on the incident polarization.
Keywords: 78.67.Bf      73.20.Mf     
Received: 19 February 2009      Published: 01 June 2009
PACS:  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/6/067802       OR      https://cpl.iphy.ac.cn/Y2009/V26/I6/067802
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Jing
ZHANG Jia-Sen
WU Xiao-Fei
GONG Qi-Huang
[1] Elghanian R et al 1997 Science 277 1078
[2] Haes A J et al 2005 J. Am. Chem. Soc. 127 2264
[3] Maier S A et al 2003 Nature Mater. 2 229
[4] Quinten M et al 1998 Opt. Lett. 23 1331
[5] Hohenau A et al 2006 Phys. Rev. B 73 155404
[6] Hohenau A et al 2007 Phys. Rev. B 75 085104
[7] Kottmann J P et al 2001 J. Electron Microscopy 202 60
[8] Sherry L J et al 2006 Nano Lett. 6 2060
[9] Aizpurua J et al 2003 Phys. Rev. Lett. 90057401
[10] Prodan E et al 2003 Science 302 419
[11] Imura K et al 2006 Appl. Phys. Lett. 88023104
[12] Aizpurua J et al 2005 Phys. Rev. B 71 235420
[13] Huang H J et al 2007 Opt. Express 15 7132
[14] Mertens H, Biteen J S, Atwater H A and Polman A 2006 Nano Lett. 6 2622
[15] Canfield B K et al 2005 Appl. Phys. Lett. 86183109
[16] Sung J, Hicks E M, Van Duyne R P and Spears K G 2007 J. Phys. Chem. C 111 10368
[17] Canfield B K et al 2004 Opt. Express 12 5418
[18] Canfield B K et al 2005 J. Opt. A: Pure Appl. Opt. 7 S110
[19] Tuovinen H et al 2002 J. Nonlin. Opt. Phys. 11 421
[20] Kunz K S and Luebbers R J 1998 The Finite DifferenceTime Domain Method for Electrodynamics (Florida: CRC) p 105
[21] Schider G, Krenn J R et al 2003 Phys. Rev. B 68 155427
Related articles from Frontiers Journals
[1] KIM Un-Chol, JIANG Xiao-Qing. Numerical Analysis of Efficiency Enhancement in Plasmonic Thin-Film Solar Cells by Using the SILVACO TCAD Simulator[J]. Chin. Phys. Lett., 2012, 29(6): 067802
[2] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 067802
[3] WANG Peng, WANG Rong-Yao**, JIN Jing-Yang, XU Le, SHI Qing-Fan**. The Morphological Change of Silver Nanoparticles in Water[J]. Chin. Phys. Lett., 2012, 29(1): 067802
[4] BAI Yi-Ming**, WANG Jun, CHEN Nuo-Fu, YAO Jian-Xi, ZHANG Xing-Wang, YIN Zhi-Gang, ZHANG Han, HUANG Tian-Mao . Dipolar and Quadrupolar Modes of SiO2/Au Nanoshell Enhanced Light Trapping in Thin Film Solar Cells[J]. Chin. Phys. Lett., 2011, 28(8): 067802
[5] LI Ming-Zhu, AN Zheng-Hua**, ZHOU Lei, MAO Fei-Long, WANG Heng-Liang . Strong Coupling between Propagating and Localized Surface Plasmons in Plasmonic Cavities[J]. Chin. Phys. Lett., 2011, 28(7): 067802
[6] CAO Zhi-Shen, PAN Jian, CHEN Zhuo, ZHAN Peng, MIN Nai-Ben, WANG Zhen-Lin** . Pure Electric and Pure Magnetic Resonances in Near-Infrared Metal Double-Triangle Metamaterial Arrays[J]. Chin. Phys. Lett., 2011, 28(5): 067802
[7] SUN Bao-Qing, GU Ying**, HU Xiao-Yong, GONG Qi-Huang** . A Trade-off between Propagation Length and Light Confinement in Cylindrical Metal-Dielectric Waveguides[J]. Chin. Phys. Lett., 2011, 28(5): 067802
[8] LIU Xiao-Lan, PENG Xiao-Niu, YANG Zhong-Jian, LI Min, ZHOU Li** . Linear and Nonlinear Optical Properties of Micrometer-Scale Gold Nanoplates[J]. Chin. Phys. Lett., 2011, 28(5): 067802
[9] LUO Shi-Qiang, ZHAO Li-Juan**, HU Nan, ZHANG Ming, ZHANG Pan, WANG Ya-Zhou, YU Hua** . Cooperative Quantum Cutting in Er3+/Yb3+ Codoped Oxyfluoride Glass Ceramics[J]. Chin. Phys. Lett., 2011, 28(3): 067802
[10] WANG Yue, WU Da-Jian, YANG Yue-Tao, LIU Xiao-Jun** . Nd-Doping Induced Lattice Distortion in TiO2 Nanoparticles[J]. Chin. Phys. Lett., 2011, 28(2): 067802
[11] ZHENG Jing-Gao, SUN Jia-Lin**, XUE Ping** . Negative Photoconductivity Induced by Surface Plasmon Polaritons in the Kretschmann Configuration[J]. Chin. Phys. Lett., 2011, 28(12): 067802
[12] WANG Xiao, JIANG Zui-Min, XU Fei, **, MA Zhong-Quan, XU Run, YU Bin, LI Ming-Zhu, ZHENG Ling-Ling, FAN Yong-Liang, HUANG Jian, LU Fang . Enhancement of Er3+ Emission from an Er−Si Codoped Al2O3 Film by Stacking Si−Doped Al2O3 Sublayers[J]. Chin. Phys. Lett., 2011, 28(12): 067802
[13] DING Bin-Feng**, LI Yong-Ping, WANG Li-Ming . Structural and Magnetic Properties of Ni-Implanted Rutile Single Crystals[J]. Chin. Phys. Lett., 2011, 28(10): 067802
[14] LIU Tao**, HUANG Zheng . High-Efficiency Graphene Photo Sensor Using a Transparent Electrode[J]. Chin. Phys. Lett., 2011, 28(10): 067802
[15] WANG Xu-Dong, YE Yong-Hong, MA Ji, JIANG Mei-Ping. Influence of Filling Medium of Holes on the Negative-Index Response of Sandwiched Metamaterials[J]. Chin. Phys. Lett., 2010, 27(9): 067802
Viewed
Full text


Abstract