CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Size- and Temperature-Dependent Thermal Expansion Coefficient of a Nanofilm |
ZHOU Li-Jun1, GUO Jian-Gang2, ZHAO Ya-Pu3 |
1Department of Mechanical Engineering, Tianjin University of Technology and Education, Tianjin 3002222Department of Mechanics, Tianjin University, Tianjin 3000723State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 |
|
Cite this article: |
ZHOU Li-Jun, GUO Jian-Gang, ZHAO Ya-Pu 2009 Chin. Phys. Lett. 26 066201 |
|
|
Abstract The thermal expansion coefficient (TEC) of an ideal crystal is derived by using a method of Boltzmann statistics. The Morse potential energy function is adopted to show the dependence of the TEC on the temperature. By taking the effects of the surface relaxation and the surface energy into consideration, the dimensionless TEC of a nanofilm is derived. It is shown that with decreasing thickness, the TEC can increase or decrease, depending on the surface relaxation of the nanofilm.
|
Keywords:
62.25.+g
65.80.+n
68.35.-p
|
|
Received: 21 November 2008
Published: 01 June 2009
|
|
|
|
|
|
[1] Renault P O et al 2003 Appl. Phys. Lett. 83473 [2] Salvadori M C et al 2003 Phys. Rev. B 67153404 [3] Villain P et al 2002 Appl. Phys. Lett. 81 4365 [4] Nilsson S G et al 2004 Appl. Phys. Lett. 853555 [5] Streitz F H, Cammarata R C and Sieradzki K 1994 Phys.Rev. B 49 10699 [6] Wang J, Huang Q A and Yu H 2008 Chin. Phys. Lett. 25 1403 [7] Wang J, Huang Q A and Yu H 2008 J. Phys. D: Appl.Phys. 41 165406 [8] Wang J, Huang Q A and Yu H 2008 Appl. Surf. Sci. 256 2449 [9] Gu M X, Sun C Q, Chen Z, Yeung T C A, Li S, Tan C M andNosik V 2007 Phys. Rev. B 75 125403 [10] Ao Z M, Li S and Jiang Q 2008 Appl. Phys. Lett. 93 081905 [11] Guo J G and Zhao Y P 2005 J. Appl. Phys. 98074306 [12] Guo J G and Zhao Y P 2007 Surf. Rev. Lett. 14667 [13] Guo J G and Zhao Y P 2007 Nanotechnoloy 18295701 [14] Guo J G, Zhou L J and Zhao Y P 2008 Surf. Rev.Lett. 15 599 [15] Zhou L G and Huang H C 2004 Appl. Phys. Lett. 84 1940 [16] Wolf D 1991 Appl. Phys. Lett. 58 2081 [17] Shenoy V B 2005 Phys. Rev. B 71 094104 [18] Villain P, Beauchamp P, Badwi K F, Goudeau P and RenaultPO 2004 Scripta Mater. 50 1247 [19] Zhao Y H and Lu K 1997 Phys. Rev. B 56 14330 [20] Kuru Y, Wohlschlogel M, Welzel U and Mittemeijer E J 2007 Appl. Phys. Lett. 90 243113 [21] Fang W L and Lo C Y 2000 Sensors Actuators A 84 310 [22] Wagner M 1992 Phys. Rev. B 45 635 [23] Yang C C, Xiao M X, Li W and Jiang Q 2006 SolidState Commun. 139 148 [24] Pathak S and Shenoy V B 2005 Phys. Rev. B 72113404 [25] Cleland A N 2003 Foundations of Nanomechanics(Berlin: Springer) [26] Wang Z D, Zhao X X, Jiang S Q and Lu J J 2005 Polymer Test. 24 839 [27] Tada H, Kumpel A E, Lathrop R E, Slanina J B, Nieva P,Zavracky P, Miaoulis I N and Wong P Y 2000 J. Appl. Phys. 87 4189 [28] Wang S R, Liang Z Y, Gonnet P, Liao Y H, Wang B and ZhangC 2007 Adv. Function. Mater. 17 87 [29] Morse P M 1929 Phys. Rev. 34 57 [30] Lim T C 2008 J. Math. Chem. 43 1573 [31] Lim T C 2007 Mol. Phys. 105 1013 [32] Lincoln R C, Koliwad K M and Ghate P B 1967 Phys.Rev. 157 463 [33] Cammarata R C 1994 Prog. Surf. Sci. 46 1 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|