Chin. Phys. Lett.  2009, Vol. 26 Issue (6): 066101    DOI: 10.1088/0256-307X/26/6/066101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Antisite Defects of the L12 Structure Determined by the Phase Field Microelasticity Model
ZHANG Jing, CHEN Zheng, LU Yan-Li, WANG Yong-Xin, ZHAO Yan
School of Material Science and Engineering, Northwestern Polytechnical University, Xi'an 710072
Cite this article:   
ZHANG Jing, CHEN Zheng, LU Yan-Li et al  2009 Chin. Phys. Lett. 26 066101
Download: PDF(325KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A phase field microelasticity simulation is performed to examine the antisite defect of L12-Ni3Al in Ni75Al5.3V19.7 ternary alloy. Combinimg strain energy with the phase field model leads to an atom configuration change as time proceeds. For the Ni sublattice, the antisite defect AlNi, the equilibrium occupancy probability (OP) of which declines, precedes NiNi and VNi in reaching equilibrium; subsequently, NiNi and VNi present a phenomenon of symmetrical rise and decline individually. Similarly, for the Al sublattice, the antisite defect NiAl, the OP of which eventually rises, takes fewer time steps than AlAl and VAl to attain equilibrium. Thereafter, AlAl rises while VAl declines symmetrically at the axes of the NiAl curve. Furthermore, the OP for the Al sublattice is much more sensitive to strain energy than that for the Ni sublattice.
Keywords: 61.72.J-      61.50.Ah      81.30.Mh     
Received: 08 October 2008      Published: 01 June 2009
PACS:  61.72.J- (Point defects and defect clusters)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  81.30.Mh (Solid-phase precipitation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/6/066101       OR      https://cpl.iphy.ac.cn/Y2009/V26/I6/066101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Jing
CHEN Zheng
LU Yan-Li
WANG Yong-Xin
ZHAO Yan
[1] Liu J B, Johnson D D and Smirnov A V 2005 ActaMater. 53 3601
[2] Mishin Y 2004 Acta Mater. 52 1451
[3] Fu C L and Painter G S 1997 Acta Mater. 45 481
[4] Badura-Gergen K and Schaefer H E 1996 Phys. Rev. B 56 3032
[5] Xie Z Y and Farkas D 1994 J. Mater. Res. 9 875
[6] Johnson R A and Brown J R 1992 J. Mater. Res. 7 3213
[7] Kim S M 1991 J. Mater. Res. 6 1455
[8] Caro A, Victoria M and Averback R S 1990 J. Mater.Res. 5 1409
[9] Foiles S M and Daw M S 1987 J. Mater. Res. 2 5
[10] Zheng L P, Li D X, Zhu Z Y et al 2002 Mater. Lett. 56 65
[11] Ikeda T, Numakura H and Koiwa M 1998 Acta Mater. 46 18
[12] Hu Q M, Yang R, Hao Y L, Xu D S et al 2004 Phys.Rev. Lett. 92 18
[13] Wang T M, Wang B Y, Ju X et al 2001 Chin. Phys.Lett. 18 361
[14] Chen L Q and Simmons J A 1994 Acta Metall. Mater. 42 2943
Related articles from Frontiers Journals
[1] LIU Yang**,PENG Xing-Ping. Validity of Nonlinear Thermodynamic Models in Ferroelectric-Paraelectric Bilayers and Superlattices[J]. Chin. Phys. Lett., 2012, 29(5): 066101
[2] LUO Xiao-Guang, HE Ju-Long. B–C–N Compounds with Mixed Hybridization of sp2-Like and sp3-Like Bonds[J]. Chin. Phys. Lett., 2012, 29(3): 066101
[3] ZHANG Jing, CHEN Zheng, ZHUANG Hou-Chuan, LU Yan-Li. Microscopic Phase-Field Study of the Occupancy Probability of α Sublattices Involving Coordination Environmental Difference for D022−Ni3V[J]. Chin. Phys. Lett., 2012, 29(2): 066101
[4] SONG Hua-Jie, HUANG Feng-Lei** . Accurately Predicting the Density and Hydrostatic Compression of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine from First Principles[J]. Chin. Phys. Lett., 2011, 28(9): 066101
[5] LIU Yang**, PENG Xing-Ping . Strain Effects of the Structural Characteristics of Ferroelectric Transition in Single-Domain Epitaxial BiFeO3 Films[J]. Chin. Phys. Lett., 2011, 28(6): 066101
[6] DENG Hong-Yan, HAO Wei-Chang, XU Huai-Zhe** . A Transition Phase in the Transformation from α-;, β- and ϵ- to δ-Bismuth Oxide[J]. Chin. Phys. Lett., 2011, 28(5): 066101
[7] HU Qian-Ku, **, WANG Hai-Yan, WU Qing-Hua, HE Ju-Long, ZHANG Guang-Lei . Structural and Electronic Properties, and Pressure-Induced Phase Transition of Layered C5N: a First-Principles Investigation[J]. Chin. Phys. Lett., 2011, 28(12): 066101
[8] RAO Jian-Ping, OUYANG Chu-Ying**, LEI Min-Sheng, JIANG Feng-Yi . Vacancy and H Interactions in Nb[J]. Chin. Phys. Lett., 2011, 28(12): 066101
[9] LI Li-Juan, ZHAO Ming-Wen, JI Yan-Ju, LI Feng, LIU Xiang-Dong. Energetic Evolution of Single-Crystalline ZnO Nanowires and Nanotubes[J]. Chin. Phys. Lett., 2010, 27(8): 066101
[10] JIN Yun-Fei, YE Xiang-Xi, LI Jing-Tian, ZHANG Wen-Xian, ZHUANG Jun, NING Xi-Jing,. A Simple Theoretical Method to Predict the Hardness of Pure Metal Crystals[J]. Chin. Phys. Lett., 2010, 27(7): 066101
[11] SHAO Xi. Indication of Low-Energy BC5 Structures[J]. Chin. Phys. Lett., 2010, 27(1): 066101
[12] XU Jian-Ping, LI Lan, LV Li-Ya, ZHANG Xiao-Song, CHEN Xi-Ming, WANG Jian-Feng, ZHANG Feng-Ming, ZHONG Wei, DU You-Wei. Structural and Magnetic Properties of Fe-Doped Anatase TiO2 Films Annealed in Vacuum[J]. Chin. Phys. Lett., 2009, 26(9): 066101
[13] LIAO Shu-Zhi, WANG Xiao-Li, ZHU Xiang-Ping, ZHANG Chun, OUYANG Yi-Fang, ZHANG Bang-Wei,. The MAEAM Model and Anharmonic Theory for the Bulk Modulus of Al Metal[J]. Chin. Phys. Lett., 2009, 26(8): 066101
[14] LIN Zhi-Ping, ZHAO Yu-Jun, ZHAO Yan-Ming. Li- Site and Metal-Site Ion Doping in Phosphate-Olivine LiCoPO4 by First-Principles Calculation[J]. Chin. Phys. Lett., 2009, 26(3): 066101
[15] QIN Kun, YANG Li-Ming, HU Shi-Sheng. Mechanism of Strain Rate Effect Based on Dislocation Theory[J]. Chin. Phys. Lett., 2009, 26(3): 066101
Viewed
Full text


Abstract