Chin. Phys. Lett.  2009, Vol. 26 Issue (6): 060505    DOI: 10.1088/0256-307X/26/6/060505
GENERAL |
Adaptive Synchronization between Two Different Complex Networks with Time-Varying Delay Coupling
CHEN Jian-Rui1,2, JIAO Li-Cheng1, WU Jian-She1, WANG Xiao-Hua1
1Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, Institute of Intelligence Information Processing, Xidian University, Xi'an 7100712College of Science, Inner Mongolia University of Technology, Inner Mongolia 010051
Cite this article:   
CHEN Jian-Rui, JIAO Li-Cheng, WU Jian-She et al  2009 Chin. Phys. Lett. 26 060505
Download: PDF(284KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new general network model for two complex networks with time-varying delay coupling is presented. Then we investigate its synchronization phenomena. The two complex networks of the model differ in dynamic nodes, the number of nodes and the coupling connections. By using adaptive controllers, a synchronization criterion is derived. Numerical examples are given to demonstrate the effectiveness of the obtained synchronization criterion. This study may widen the application range of synchronization, such as in chaotic secure communication.
Keywords: 05.45.Xt      89.75.-k     
Received: 27 February 2009      Published: 01 June 2009
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  89.75.-k (Complex systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/6/060505       OR      https://cpl.iphy.ac.cn/Y2009/V26/I6/060505
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Jian-Rui
JIAO Li-Cheng
WU Jian-She
WANG Xiao-Hua
[1] Strogatz S H 2001 Nature 410 268
[2] L\"{u J H and Chen G R 2005 IEEE Trans. Autom.Control 50 841
[3] Lu W L and Chen T P 2004 IEEE Trans. Circuit Syst.I 51 1491
[4] Li C G et al 2004 Physica A 335 359
[5] Nishikawa T and Motter A E 2006 Phys. Rev. E 73 065106
[6] Wu J S and Jiao L C 2007 Physica A 386 469
[7] Wu J S and Jiao L C 2007 Physica A 386 513
[8] Arenas et al 2008 Phys. Rep. 469 93
[9] Montbrio et al 2004 Phys. Rev. E 70 056125
[10] Li C P et al. 2007 Phys. Rev. E 76 046204
[11] Tang H W et al 2008 Physica A 387 5623
[12] Li Y et al 2008 Chin. Phys. Lett 25 874
[13] Sun M et al 2009 Chin. Phys. Lett. 26 010501
[14] Li C P et al 2009 Chaos 19 013106
[15] Cuomo K M 1993 IEEE Trans. Circuit Syst. I$\!$I 40 626
[16] Wu C and Chua L 1993 Int. J. Bifur. Chaos 31619
[17] Horn R A and Johnson C R 2005 (Beijing: PostTelecommunication Press) (in Chinese)
[18] Khalil H K 1996 Nonlinear Systems (New Jersy,Prentice Hall: Upper Saddle River) p 07458
[19] Chen G and Ueta T 1999 Int. J. Bifur. Chaos 91465
[20] R\"{osller O E 1979 Ann. NY, Acad. Sci. 316376
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 060505
[2] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 060505
[3] LIU Xu,XIE Zheng,YI Dong-Yun**. Community Detection by Neighborhood Similarity[J]. Chin. Phys. Lett., 2012, 29(4): 060505
[4] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 060505
[5] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 060505
[6] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 060505
[7] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 060505
[8] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 060505
[9] GAO Zong-Mao, GU Jiao, LI Wei. Epidemic Spreading in a Multi-compartment System[J]. Chin. Phys. Lett., 2012, 29(2): 060505
[10] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 060505
[11] MENG Qing-Kuan**, ZHU Jian-Yang . Constrained Traffic of Particles on Complex Networks[J]. Chin. Phys. Lett., 2011, 28(7): 060505
[12] ZHAO Zhi-Dan, XIA Hu, SHANG Ming-Sheng**, ZHOU Tao, . Empirical Analysis on the Human Dynamics of a Large-Scale Short Message Communication System[J]. Chin. Phys. Lett., 2011, 28(6): 060505
[13] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 060505
[14] LI Wei, **, GAO Zong-Mao, GU Jiao, . Effects of Variant Rates and Noise on Epidemic Spreading[J]. Chin. Phys. Lett., 2011, 28(5): 060505
[15] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 060505
Viewed
Full text


Abstract