Chin. Phys. Lett.  2009, Vol. 26 Issue (6): 060503    DOI: 10.1088/0256-307X/26/6/060503
GENERAL |
Dynamical System Approach to a Coupled Dispersionless System: Localized and Periodic Traveling Waves
Gambo Betchewe1,2, Kuetche Kamgang Victor1,2, Bouetou Bouetou Thomas1,2,3, Timoleon Crepin Kofane2,3
1Ecole Nationale Supérieure Polytechnique, University of Yaounde I, PO Box 8390, Cameroon2Department of Physics, Faculty of Science, University of Yaounde I, PO Box. 812, Cameroon3The Abdus Salam International Centre for Theoretical Physics, PO Box 586, Strada Costiera, II-34014, Trieste, Italy
Cite this article:   
Gambo Betchewe, Kuetche Kamgang Victor, Bouetou Bouetou Thomas et al  2009 Chin. Phys. Lett. 26 060503
Download: PDF(281KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the dynamical behavior of a coupled dispersionless system describing a current-conducting string with infinite length within a magnetic field. Thus, following a dynamical system approach, we unwrap typical miscellaneous traveling waves including localized and periodic ones. Studying the relative stabilities of such structures through their energy densities, we find that under some boundary conditions, localized waves moving in positive directions are more stable than periodic waves which in contrast stand for the most stable traveling waves in another boundary condition situation.
Keywords: 05.45.Yv     
Received: 09 February 2009      Published: 01 June 2009
PACS:  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/6/060503       OR      https://cpl.iphy.ac.cn/Y2009/V26/I6/060503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Gambo Betchewe
Kuetche Kamgang Victor
Bouetou Bouetou Thomas
Timoleon Crepin Kofane
[1] Konno K and Kakuhata H 1996 J. Phys. Soc. Jpn. 65 340
[2] Kakuhata H and Konno K 1997 J. Phys. A: Math. Gen. 30 L401
[3] Kakuhata H and Konno K 2002 Theor. Math. Phys. 133 1675
[4] Drazin P G and Johnson R S 1989 Solitons: anIntroduction (Cambridge: Cambridge University)
[5] Ablowitz M J and Clarkson P A 1991 Solitons,Nonlinear Evolution Equations and Inverse Scattering (Cambridge:Cambridge University)
[6] Dirac P A M 1964 Lectures on Quantum Mechanic (NewYork: Belfer Graduate School of Science, Yeshiva University)
[7] Kakuhata H and Konno K 1996 J. Phys. Soc. Jpn. 65 1
[8] Gradshteyn I S and Ryzhik I M 2000 Table ofIntegrals, Series, and Products (New York: Academic)
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 060503
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 060503
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 060503
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 060503
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 060503
[6] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 060503
[7] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 060503
[8] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 060503
[9] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 060503
[10] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 060503
[11] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 060503
[12] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 060503
[13] ZHANG Zhi-Qiang, WANG Deng-Long**, LUO Xiao-Qing, HE Zhang-Ming, DING Jian-Wen . Controlling of Fusion of Two Solitons in a Two-Component Condensate by an Anharmonic External Potential[J]. Chin. Phys. Lett., 2011, 28(5): 060503
[14] WU Jian-Ping** . A New Wronskian Condition for a (3+1)-Dimensional Nonlinear Evolution Equation[J]. Chin. Phys. Lett., 2011, 28(5): 060503
[15] XIN Xiang-Peng, LIU Xi-Qiang, ZHANG Lin-Lin . Symmetry Reduction, Exact Solutions and Conservation Laws of the Modified Kadomtzev–Patvishvili-II Equation[J]. Chin. Phys. Lett., 2011, 28(2): 060503
Viewed
Full text


Abstract